

Analisi empirica della domanda di copertura sanitaria: problemi metodologici e applicativi

Matteo Lippi Bruni

Dipartimento di Scienze Economiche Università di Bologna matteo.lippibruni2@unibo.it

Torino, 9 Dicembre 2009

L'assicurazione sanitaria nella letteratura economica

- L'analisi **empirica** della **domanda di assicurazione sanitaria** è stata oggetto di forte attenzione in letteratura per molteplici ragioni:
 - Rilevanti obiettivi di policy in contesti istituzionali anche molto differenziati (es. definizione dell' opportuno mix pubblico/privato, implicazioni per l'accesso alle cure)
 - Interessante area di studio dove **testare ipotesi** proposte dalla **teoria** (e.g. economia dei contratti)
 - Crescente disponibilità di dati
- Le analisi empiriche mediante *revealed preferences*
 - 1. Come testare la presenza di fallimenti di mercato?
 - Moral hazard e Selezione Avversa
 - Come individuare le determinanti della domanda di copertura assicurativa?
 - Influenza della presenza di un assicuratore pubblico dominante (NHS)

Metodologie alternative

- In tempi più recenti sono state proposte anche applicazioni delle metodologie c.d. di *stated preferences*
 - 1. Come stimare la domanda per forme di copertura non ancora introdotte nel mercato (es. LTC)
 - WTP e analisi delle determinanti
 - 2. Come stimare il valore attribuito a specifici attributi delle polizze assicurative
 - Es. valore attribuito alla possibilità di "saltare la coda", o di scegliere il professionista da cui farsi curare
 - Choice experiment /Conjoint analysis sono strumenti di indagine sempre piu' diffusi in economia sanitaria, attraverso cui si chiede agli intervistati di effettuare scelte fra pacchetti assicurativi alternativi.
 - WTP totale e per singoli attributi viene ricavata indirettamente attraverso stima dei Saggi Marginali di Sostituzione

3

Brevi richiami di teoria economica

- Il ruolo fondamentale svolto dai meccanismi di **copertura dei rischi sanitari** è la conseguenza di una serie di fattori economici ed epidemiologici:
 - Incertezza sui possibili shock negativi sullo stato di salute
 - Non so quale malattia potrà colpirmi né in quale momento
 - Livelli di spesa estremamente differenziati fra individui e lungo il ciclo di vita
 - In questi casi i meccanismi assicurativi sono potenzialmente strumenti efficaci per ridurre il rischio sopportato dai singoli (socializzazione del rischio).
 - Elevatissimi costi di alcuni trattamenti finiscono per attribuire alla disponibilità di una copertura anche un ruolo discriminante in termini di accesso (equità)
 - Implicazioni più generali sulla capacità di svolgere altre attività
 - Buona salute quale pre-requisito per svolgere altre attività (lavoro, sostegno familiare, godimento tempo libero)

Mercati assicurativi in sanità

- Il rischio contro cui ci si può assicurare in ambito è un rischio derivato
 - Assicurazione contro le conseguenze economiche di un deterioramento dello stato di salute
- I mercati assicurativi sono anch'essi soggetti a <u>fallimenti</u>
 - Contratti incompleti
 - è impossibile includere nei contratti tutte le possibili contingenze economicamente rilevanti.
 - Impossibilità di stipulare accordi di lungo periodo
 - non ci si può assicurare contro il rischio di diventare "cattivi rischi".
 - Asimmetrie informative:
 - selezione avversa (informazione nascosta);
 - · azzardo morale (azione nascosta).

.

Adverse Selection e Moral Hazard

- L' Adverse Selection è un fallimento derivante da informazione nascosta:
 - Qualora gli assicurati dispongano di maggiori informazione sul proprio rischio sanitario degli assicuratori, gli alti rischi tenderanno a scegliere le forme di copertura più generose.
 - Impossibilità per assicuratore di imporre maggiori costi per unità di copertura per alti rischi
- Il **Moral Hazard** è asimmetria informativa derivante da azione nascosta
 - In presenza di copertura assicurativa gli assicurati tenderanno a:
 - Ridurre i comportamenti preventivi (ex-ante MH) rispetto all'ottimo sociale, con conseguente incremento della frequenza degli eventi avversi;
 - Aumentare la domanda di prestazioni a parità di condizioni cliniche (ex-post MH) con conseguente incremento dei consumi al di là dei livelli socialmente ottimali

Moral hazard e adverse selection

- Perché è importante riuscire a misurare l'intensità del MH?
- Forte crescita della <u>spesa sanitaria</u> può dipendere *anche* dall'estensione della <u>copertura assicurativa</u>.
 - Se l'elasticità al prezzo della domanda di cure è elevata, meccanismi di compartecipazione possono contenere crescita della domanda al di là del livello socialmente ottimale
 - Ticket sanitario nel SSN, Co-pagamenti- Franchigie Massimali per assicurazioni private
 - Se però entità del MH è bassa, prevedere compartecipazioni di spesa aumenta il rischio finanziario a cui sono soggetti gli individui, oltre a produrre effetti negativi in termini di equità di accesso.

Impatto sul benessere sociale delle forme di compartecipazione dipende crucialmente dall'entità del MH nel consumo di cure mediche ⁷

Il problema di identificazione

- Il **problema empirico** con cui ci confrontiamo è quello della presenza congiunta di:
 - Eterogeneità (non osservabile) fra individui
 - Associazione fra individui e tipologia di contratti non casuale (endogenità)
- Dato osservazionale: livelli di spesa sanitaria più elevati in capo ai soggetti che hanno coperture assicurative più generose,
- Posso dedurre una relazione causale?
 - Si tratta di una risposta (razionale) a differenti sistemi di incentivi prodotti da differenti forme contrattuali (azzardo morale) ?
 - Oppure i contratti più generosi attraggono le persone più cagionevoli di salute (selezione avversa)?

Condizioni di identificazione

- Sotto quali condizioni si può risolvere questo problema di identificazione?
 - Quando tutti gli individui sono uguali rispetto alle variabili rilevanti per il mio problema (qui medesimo rischio sanitario)
 - Quando tutte le differenze individuali rilevanti fossero perfettamente osservabili
 - Inserendo i controlli per tutti i fattori osservabili si fa inferenza in condizioni di ceteris paribus (other things equal)
 - Es. se età e sesso fossero gli unici fattori di rischio, posso depurare l'impatto sulla spesa sanitaria indotta dall'estensione della copertura
 - Quando l'assegnazione a un tipo di copertura piuttosto che a un altro avviene in modo casuale
 - In questo caso posso "assumere" che gli individui non differiscano per caratteristiche rilevanti
 - Attribuzione casuale ai diversi gruppi "assicura" che la tipologia del contratto non sia correlata con caratteristiche dell'individuo che influenzano il suo comportamento.

9

Correlazione vs. causalità

- I dati empirici tipicamente ci forniscono informazioni su correlazioni fra variabili
 - Es. elevata copertura assicurativa può essere associata a elevati livelli di spesa sanitaria
 - Es. elevata copertura assicurativa può essere associata a minore attenzione a comportamenti preventivi
- Ciò a cui noi siamo tipicamente **interessati** invece sono le **relazioni causa-effetto**
 - Una elevata copertura determina consumi di cure in eccesso rispetto all'ottimo sociale?
 - Una elevata copertura genera una riduzione dello sforzo verso comportamenti preventivi?

- Le **correlazioni** empiriche osservate nei dati *dipendono* dai diversi **incentivi** generati dalle forme contrattuali ?
- Tali **correlazioni** empiriche sono **determinate** unicamente da una **diversa composizione** (non osservabile) **dei gruppi** di individui che optano per particolari tipologie contrattuali?
 - Se gli individui possono scegliere la tipologia contrattuale cui aderire è ragionevole immaginare che individui simili optino per il medesimo contratto (<u>autoselezione</u>) in quanto riflette meglio i propri bisogni

A causa dei problemi evidenziati in precedenza da una mera correlazione non possiamo necessariamente dedurre l'esistenza di relazione di causa effetto

11

Rand Experiment

- Soluzione ideale per questo tipo di problemi è ricorrere a dati
 - Prospettici
 - Longitudinali
 - Panel in cui gli stessi individui vengono seguiti nel corso del tempo
 - Sperimentali
 - allocazione random degli individui a diversi tipi di copertura
- Impostazione comporta <u>costi proibitivi</u> e <u>problemi etici</u> legati alla necessità di vincolare le scelte di copertura assicurativa degli individui per lungo tempo.
- Esiste un solo esempio in letteratura **RAND Experiment** .
 - Risultati fondamentali ma molto datati (anni 70) e ricavati in un contesto istituzionale e culturale molto particolare come gli Stati Uniti

I limiti dei dati cross section

- Dati **cross section** non permettono di identificare l'entità del MH
 - Se anche i gruppi che hanno coperture più generose consumano di più, non posso sapere se ciò dipende dalla struttura di incentivi implicita nella copertura
 - E se tale associazione dipendesse semplicemente da fatto che chi sapeva di essere a più alto rischio ha optato per coperture più generose?
- Possibile causalità inversa
 - Relazione di causalità potrebbe <u>non</u> andare "<u>dal contratto al consumo</u>" (MH), ma "<u>dal consumo (atteso) alla scelta del contratto (AS)</u>"
 - Processo di autoselezione previsto dai modelli di AS

13

Dati longitudinali

- I dati longitudinali possono fornire indicazioni più precise, qualora nel periodo di osservazione si registri una variazione esogena nella struttura di incentivi.
 - Es. cambiamento normativo che introduce i ticket o altre forme di compartecipazione alla spesa
- La variazione deve essere fuori dal controllo degli individui
 - Es. non è possibile uscire dai contratti assicurativi in essere.
- Se <u>muta il consumo</u> di cure a seguito di una variazione della generosità della copertura, posso ricavare <u>informazioni</u> sulla eventuale <u>presenza del MH</u>
 - I medesimi individui presentano comportamenti diversi nel tempo a seguito di una variazione della struttura di incentivi
 - Sfrutto la variabilità dei comportamenti e degli incentivi nel tempo
 - Si elimina così il problema dell'autoselezione

Esperimenti naturali

- Nel caso precedente ciò che a rigore si sta catturando è una relazione di simultaneità e non una relazione di causalità vera e propria.
 - I comportamenti di consumo sono mutati simultaneamente al mutare della struttura di incentivi
 - La mutazione dei comportamenti potrebbe essere stata causata da altri fattori diversi dalla struttura contrattuale- che sono variati contestualmente ad essa
- Per catturare una autentica relazione di causalità ho bisogno di ulteriore informazioni
 - Non basta osservare comportamenti prima e dopo la variazione esogena nel sistema di incentivi contrattuali
 - E' necessario poter osservare individui per cui gli incentivi non sono mutati nel tempo (**gruppo di controllo**)

Un semplice esempio

- Chiappori P-A, Durand F. Geoffard, P-Y, (1998), Moral Hazard and the demand for physician services: First lessons from a French natural experiment, European Economic Review,
- In concomitanza con una <u>riforma del sistema assicurativo</u>
 <u>pubblico</u> francese **Assurance Maladie** che incrementava i copagamenti per prestazioni ambulatoriali , le **mutue integrative**hanno **modificato le proprie coperture**:
 - Alcune mutue integrative hanno ampliato la copertura (e aumentato i premi in modo corrispondente) per farvi rientrare le maggiori spese dei cittadini dovute alla riforma dell'assicurazione pubblica (cost sharing invariato)
 - <u>Altre mutue</u> integrative hanno approfittato del cambiamento istituzionale per <u>introdurre</u> forme di <u>copagamento</u>

Il caso di esperimento naturale

- Grazie a questa particolare condizione istituzionale si registrano tutte le **caratteristiche desiderate**:
 - Variazioni esogena nel sistema di incentivi
 - Presenza tanto di un gruppo di soggetti "trattati", quanto di un gruppo di controllo
- Si considerano due contratti di copertura integrativa sottoscritti e pagati dai datori di lavoro per conto dei loro dipendenti.
 - Per una corretta identificazione è necessario che la scelta iniziale del contratto assicurativo non dipenda da caratteristiche correlate ai consumi sanitari
 - Idealmente dovrei avere un'assegnazione casuale (es Rand experiment)
 - Ipotizzando che la scelta iniziale del lavoratore non sia influenzata dal pacchetto integrativo proposto dal datore di lavoro, si esclude ogni problema di selezione.

I contratti proposti

Contratto A - Reference Group (889 indvidui)

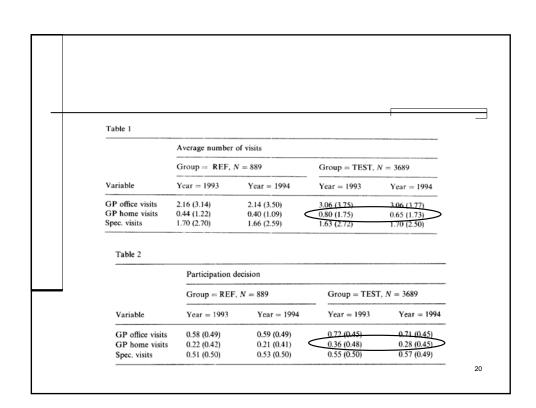
- Garantisce piena copertura della spese ambulatoriali sia prima che dopo la riforma di Assurance Maladie
 - Dopo la riforma i premi crescono per coprire i maggiori costi in capo all'assicurazione
 - Copagamento medio è 0,87% prima e 0,43% dopo la riforma
 - Proporzione di visite rimborsate integralmente è 5,4 % prima della riforma, e 6,1% dopo la riforma

■ Contratto B - Test Group (3689 individui)

- Dopo la riforma di Assurance Maladie introduce un copagamento del 10%
 - Co-pagamento medio è 0,87% prima della riforma e 10.2 % dopo la riforma
 - Proporzione di visite rimborsate integralmente è 2,2 % prima della riforma, e 1,0 % dopo la riforma
- Si scarta chi utilizza sistematicamente copertura del coniuge

Difference in differences

- Consideriamo due misure rilevanti:
 - numero di visite
 - avere avuto almeno una visita nell'anno
- Se l'assegnazione degli individui ai due campioni fosse random, potremmo limitarci a testare la presenza di differenze significative nelle variazioni delle medie delle variabili di interesse
- Guardo alla differenza delle medie post-pre variazione degli incentivi, stimatore Difference in differences (DD)


 $\hat{\delta}_1 = (\bar{y}_{B,2} - \bar{y}_{B,1}) - (\bar{y}_{A,2} - \bar{y}_{A,1}).$

B gruppo dei soggetti "trattati"

A gruppo di controllo

Cattura variazione di comportamento dovuta a variazione degli incentivi

Cattura variazione di comportamento dovuta a variazione del tempo (gruppo di controllo, incentivi invariati)

Analisi econometrica

- In questo caso però i campioni presentano alcune differenze sistematiche relativamente ad alcune variabili osservabili
 - Età e localizzazione geografica (mentre composizione per genere e numero di figli non segnalano differenze significative)
- Per cui si opta per un' **analisi econometrica** in cui inseriscono i controlli per una serie di variabili esogene:
 - Età, sesso, condizione familiare e localizzazione geografica
 - y_{it} =1 se agente i ha avuto almeno una visita nel tempo t; 0 altrimenti
- Stima panel probit (due gruppi e due periodi)
 - la variabile dipendente è dicotomica (ho il contratto o meno)
 - Γ_i =1 se agente appartiene al gruppo test
 - γ_i =1 se periodo è post riforma

21

Modello stimato

$$y_{it} = \left(\left[\alpha + \beta'_0 \Gamma_i + \sum_{k=1}^K \beta_k X_{ik} + \sum_{k=1}^K \beta'_k \Gamma_i X_{ik} \right] + \gamma_t \left[\Delta \alpha + \Delta \beta'_0 \Gamma_i + \sum_{k=1}^K \Delta \beta_k X_{ik} + \sum_{k=1}^K \Delta \beta'_k \Gamma_i X_{ik} \right] + \varepsilon_{it} > 0 \right),$$

- Nel'ipotesi H₀ che non ci sia MH
 - $\Delta \beta_0$ '=0
 - $\Delta\beta_{\kappa}$ =0 per ogni k
 - $\Delta\beta_{\kappa}$ '=0 per ogni k
- Se invece il contratto influenza i comportamenti di consumo
 - $\Delta\beta_{\kappa}$ =0 per ogni k
 - Qualora questi ultimi coefficienti risultassero diversi da 0, ciò segnalerebbe mis-specificazione del modello

Risultati empirici

- Si stima modello panel probit e poi si fa un test di uguaglianza a zero dei coefficienti come indicato.
 - Per testare H₀ (assenza MH) $\Delta \beta_0'=0 \Delta \beta_{\kappa}'=0$

■ Esiti:

- Visite ambulatoriali e visite specialistiche l'ipotesi di assenza di MH non viene mai rigettata
 - coefficienti mai significativamente diversi da zero)
- Visite a domicilio l'ipotesi di assenza di MH viene rigettata
 - coefficienti risultano significativamente diversi da 0
- In tutti i casi $\Delta \beta_{\kappa}$ =0 per ogni k
 - non ci sono segnali di errata specificazione del modello

23

Le determinanti della domanda di copertura

- Un diverso problema analizzato in letteratura è lo studio delle **determinanti** dell'acquisto di polizze assicurative (integrative)
- Ruolo del settore sanitario privato in presenza di un assicuratore pubblico dominante
 - Problemi di redistribuzione e equità nell'accesso, public/private mix ottimale, duplicazione della copertura, sostegno politico verso spesa sanitaria pubblica etc...
- Esempi di problemi trattati:
 - Gap nella qualità (Costa and Garcia HE),
 - Tempi di attesa (Besley Hall and Preston JPub Ec),
 - Propensione verso il settore pubblico (Propper, J Pub Ec)

Il modello probit

- Variabile dipendente è solitamente dicotomica (acquisto o non acquisto la polizza integrativa)
 - y = Xb + e y = 1 se y > 0; y = 0 altrimenti.
 - Non valgono le tradizionali assunzioni di omoschedasticità e soprattutto i valori stimati possono collocarsi al di fuori del range ammissibile [0;1]
- Non è corretto stimare OLS, devo usare una funzione link che vincoli le stime a restare nel range di ammissibilità.
 - Una funzione di ripartizione (cumulata della densità) è ottima "candidata" perché è vincolata [0;1]. Se si sceglie la Normale abbiamo modello probit
- $Pr(y=1 | x) = \Phi(xb)$ con Φ che si distribuisce come Normale

$$P(Y=1|X=x) = \Phi(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4).$$

Un semplice esempio

- Besley, Hall, Preston The demand for private health insurance: do waiting lists matter? *Journal of Public Economics*, 1999
- Analizzano la domanda di **assicurazioni integrative in UK**, dove il 15% ca. delle famiglie beneficia di coperture supplementari
 - Uno dei vantaggi di possedere tali assicurazioni è quello di potere "saltare la coda"
- Si vuole testare se la presenza di **liste d'attesa** più lunghe sia un fattore che **aumenta** la **propensione** delle famiglie ad **acquistare coperture integrative**
 - Crescita nella lunghezza delle liste d'attesa aumenta la probabilità di acquisto di una polizza
 - Differenziazione territoriale del NHS
 - Due tipi di polizze: acquisto individuale, acquisto del datore di lavoro

Variabili descrittive

Table 2 Characteristics of the privately insured and uninsured

	No private insurance	Own purchase	Employer purchase
GCSE education	26.2%	29.9%	26.5%
A level education	21.3%	36.0%	38.1%
Degree level education	6.8%	13.1%	16.0%
Woman	54.5%	48.3%	46.5%
Age 30s	19.9%	18.2%	31.5%
Age 40s	17.8%	25.7%	32.9%
Age 50-65	21.6%	27.0%	18.9%
Age over 65	20.1%	13.2%	2.0%
Number of children	0.7	1.0	0.9
Number of adults	2.1	2.2	2.2
Self-employed	6.9%	13.1%	7.0%
Public sector worker	30.0%	34.9%	18.4%
Manufacturing sector	30.2%	21.7%	28.6%
Owner-occupier	65.9%	88.4%	90.8%
Tabloid reader	84.0%	66.1%	67.6%
Conservative identifier	33.3%	59.2%	60.4%
Labour identifier	37.8%	15.9%	13.9%
Total number of respondents	9089	725	915

Copertura per settore occupazionale

Table 3

Coverage of private medical insurance by industry group

Industrial grouping	No private insurance (%)	Own purchase (%)	Employer purchase (%)	Sample size
Agriculture	89.2	6.4	4.5	157
Energy and water	87.9	6.4	5.7	264
Metals and mineral extraction	83.3	4.2	12.6	382
Metal goods engineering	86.1	5.4	8.6	1098
Other manufacturing	87.4	3.8	8.8	1131
Construction	85.1	6.0	9.0	603
Distribution	86.5	5.6	7.9	1927
Transport and communication	83.4	9.6	7.0	603
Financial services	68.4	9.7	21.9	898
Other services	85.9	8.1	6.0	3270
Never had a job	90.9	6.8	2.3	396
All respondents	84.7	6.8	8.5	10,729

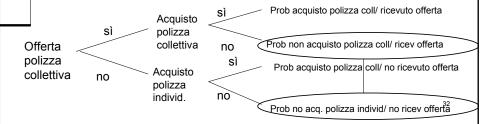
L'analisi econometrica

■ Stima *probit*

$$m^{\star}_{ijt} = \alpha X_{ijt} + \beta Q_{jt} + \gamma Y_{ijt} + \delta_t + \phi_j + \epsilon_{ijt},$$

- m probabilità di acquisto della polizza integrativa
- **ε** errore distribuito secondo la Normale
- X vettore caratteristiche individuali
- Q serie di indicatori di "qualità" NHS- lunghezza liste d'attesa
- Y dummy per settore occupazionale
- \bullet δ dummy per anno
- *Ф* dummy Regional Health Authority

Parameter	Estimate	Est./s.e.	Estimate	Est./s.e.
Long term waiting list	0.0221	3.220	0.0205	2.430
Waiting list	-0.0046	-1.386	-0.0084	-1.671
Total staff	-0.0002	-0.672	0.0006	0.707
HQ spending	0.0086	1.751	-0.0039	-0.321
Support spending	-0.0002	-0.293	-0.0027	-1.093
Treatment spending	-0.0004	-0.694	-0.0001	-0.045
Household income	< 0.0037	23.151	0.0036	23.022
GCSE education	0.0461	5.165	0.0457	5.147
A level education	0.0713	7.566	0.0712	7.590
Degree education	0.0580	4.397	0.0573	4.368
Self-employed	-0.0331	-3.424	-0.0330	-3.448
Public sector worker	-0.0379	-4.345	-0.0372	-4.297
Owner-occupier	0.0422	5.343	0.0409	5.198
Age 30s	0.0644	4.397	0.0628	5.710
Age 40s	0.1076	9.412	0.1053	9.268
Age 50-65	0.0952	8.269	0.0948	8.260
Age over 65	0.0693	4.660	0.0666	4.514
Number of children	-0.0069	-2.089	-0.0061	-1.855
Number of adults	-0.0269	-6.466	-0.0272	-6.558
Time dummies		Yes		Yes
RHA dummies		No		Yes
Occupational dummies		Yes		Yes
Sample probability		0.1529		.1529
Predicted probability		0.1011		.0996
Mean log likelihood		-0.345	_	0.343
Sample size		10.729	1	0.729


Risultati modello probit

- Probabilità di acquistare polizza integrativa:
 - cresce con il **reddito** della famiglia
 - cresce con la proprietà della casa
 - cresce con il livello di educazione
 - Cresce con l'allungarsi delle Long term waiting lists
 - Ha un andamento a U rovesciata per età
 - Cala con numero di figli e di componenti adulti
 - Cala per i dipendenti pubblici e lavoratori autonomi (???)
- Possibile problema:
 - dipendenti del settore privato posso ricevere dal datore di lavoro offerta per polizza assicurativa (non accade per dipendenti pubblici e autonomi)

31

Un approccio più sofisticato

- Approccio più "sofisticato" tiene conto della distinzione fra polizze acquistate a titolo individuale e polizze finanziate dal datore di lavoro
- Tre gruppi di individui:
 - Chi non ha polizze integrative
 - Chi possiede polizze finanziate dal datore di lavoro
 - Chi possiede polizze individuali

- Non si osserva se un individuo ha ricevuto o meno offerta della polizza dal datore di lavoro.
 - Con le informazioni disponibili non riesco a separare i due gruppi di individui che non acquistano polizza
 - Modello strutturale di tre equazioni non può essere stimato
 - 1. Probabilità di ricevere offerta polizza dal datore di lavoro
 - 2. Probabilità di accettare polizza collettiva dato che ho ricevuto offerta
 - 3. Probabilità di acquistare se non ho ricevuto offerta
- Si può stimare un **modello in forma ridotta** in cui le prime due equazioni sono "fuse insieme" (**polizza di gruppo**)
 - I parametri dell'equazione risultante dall'aggregazione di 1 e 2 non possono avere interpretazione economica
 - I parametri della equazione 3 possono ancora avere interpretazione economica (prob. di acquistare polizza individuale)

$$h_{ijt} = \mathbf{1}(h_{ijt}^{\star} > 0, H_{ijt}^{\star \star} \leq 0), \qquad h_{ijt}^{\star} = \alpha X_{ijt} + \beta Q_{jt} + \delta_t + \phi_j + u_{ijt},$$

$$H_{ijt} = \mathbf{1}(H_{ijt}^{**} > 0), \qquad \qquad H_{ijt}^{**} = AX_{ijt} + BQ_{jt} + \underbrace{CY_{ijt}} + D_t + F_j + U_{ijt}.$$

- Come identifico le due equazioni?
- E' necessario individuare una variabile (o un insieme di variabili) che influenza uno dei due processi ma non l'altro.
 - Se tutte le variabili che entrano nella prima equazione entrano anche nella seconda ho problemi a stimare matrice var/cov degli errori (stima simultanea)
- Qui <u>esiste un candidato</u> naturale: le *dummy* per **settore occupazionale D**
 - Influenzano le probabilità che venga offerta una polizza collettiva, quindi anche il suo acquisto (equazione H**)
 - \blacksquare Non influenzano la scelta di acquisto a livello individuale (equazione h**) $$_{34}$$

Polizza individuale Table 5 Individually purchased private medical insurance Parameter Estimate Est./s.e. Estimate Est./s.e. Long term waiting 0.0181 2.665 0.0149 1.820 -0.736 0.111 -0.731 -1.347 -0.613 Waiting list Total staff HQ spending -0.668-0.0023-0.00370.0037 0.0001 -0.0086 -0.0032 -0.0015 -0.0023 -0.0003 -0.0001 -0.0000 -0.808 1.274 -0.023 Support spending Treatment spending -0.0002-0.3800.0027 0.0457 0.0584 0.0430 -0.0042 -0.0240 0.0402 13.356 5.491 7.237 3.963 Household income 0.0028 13.335 0.0028 0.0458 0.0585 0.0440 -0.0038 0.0240 0.0409 5.578 7.307 4.078 GCSE education GCSE education A level education Degree education Self-employed Public sector Owner-occupier -0.307 -2.676 4.930 -0.347 -2.733 4.799 Age 30s Age 40s Age 50–65 Age over 65 Number of children Number of adults 3.132 6.729 7.003 0.0343 3.238 0.0330 0.0343 0.0671 0.0672 0.0597 -0.0085 5.238 6.962 7.169 4.641 -2.643 0.0650 0.0661 0.0572 -0.0077 -0.0198 4.452 -0.0197-5.061-5.0840.7296 5.779 0.7288 5.845 ρ Time dummies Yes No Yes Yes RHA dummies $\chi_{10}^2 = 41.920$ $\chi_{24}^2 = 118.477$ $\chi_{10}^2 = 42.414$ $\chi_{39}^2 = 121.679$ W_1 W_2 -0.435 10,729 -0.432 10,729 Mean log likelihood Sample size

 W_1 , Wald test for no occupational dummy effects in employer provided insurance equation; W_2 , Wald test for equality of coefficients between individual and employer provided equations.

	_		_		
Polizza d	i gruppe	o- offert	a datore	di lavoro)
	- 6 F F				
Table 6 Employer provided insura					
Parameter	Estimate	Est./s.e.	Estimate	Est./s.e.	=
Long term waiting	0.0089	2.636	0.0088	2.042	
Waiting list	-0.0032	-1.920	-0.0059	-2.317	
Total staff	-0.0000	-0.101	0.0007	1.587	
HQ spending	0.0049	1.924	0.0055	0.812	
Support spending	-0.0002	-0.644	-0.0000	-0.005	
Treatment spending	-0.0002	-0.884	0.0012	0.888	
Household income	0.0018	20.891	0.0017	20.530	
GCSE education	0.0061	1.377	0.0055	1.255	
A level education	0.0171	3.986	0.0165	3.864	
Degree education	0.0131	2.284	0.0131	2.287	
Self-employed	-0.0420	-7.383	-0.0413	-7.306	
Public sector	-0.0310	-6.648	-0.0300	-6.441	
Owner-occupier	0.0128	2.773	0.0119	2.585	
Age 30s	0.0303	6.062	0.0294	5.924	
Age 40s	0.0369	7.535	0.0357	7.363	
Age 50-65	0.0241	4.678	0.0237	4.647	
Age over 65	-0.0192	-2.154	-0.0194	-2.197	
Number of children	-0.0006	-0.388	-0.0004	-0.258	
Number of adults	-0.0118	-5.291	-0.0118	-5.319	
Time dummies		Yes		Yes	
RHA dummies		No		Yes	
Occupational dummies		Yes		Yes	

Risultati empirici

- Test per uguaglianza dei coefficienti nelle due equazioni viene rigettato
 - Si conferma esigenza di stimare separatamente le due scelte di acquisto (polizza collettiva e individuale)
- La condizione di **lavoratore autonomo non** influenza più **significativa**mente la probabilità di acquisto della polizza.
- Nella stima dell'equazione per polizze individuali valore dei impatto delle condizioni personali (educazione, età) è tendenzialmente maggiore rispetto a quello ottenuto nell'equazione della polizza di gruppo
 - Interpretazione di coefficienti per quest'ultima equazione richiede cautela: mix di influenze di domanda e offerta

37

Grazie per l'attenzione!