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Free University of Bolzano/Bozen
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Abstract

The paper examines e¢ cient mechanisms to allocate scarce trans-
mission capacity when the upstream generation market is not com-
petitive. I analyze an environment in which the regulator owns the
transmission infrastructure. The regulator cannot directly intervene in
the generation market. However, through the allocation mechanism,
it can a¤ect incentives of the upstream generators, thereby modisying
the outcome of the generation market.
I �nd that, when the allocation is related to the generated output,

the mechanism can partly correct the standard production externality
intrinsic in the transmission market (determined by the fact that the
constraint on the transmission capacity is on the net, rather than on
the gross, �ow of energy).

�I would like to thank John Panzar for his guidance, and Jakub Kastl, Salvatore Piccolo
and Viswanath Pingali for helpful discussions.
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1 Introduction

This paper is part of a project that analyzes a market characterized by two
nodes. In each of these nodes there is a given number of consumers and a
certain number of upstream �rms, all producing an homogenous commodity.
In order for producers located in one node to reach consumers located in the
other node, a downstream interconnection infrastructure - be it a transmis-
sion infrastructure in the electricity case, a pipeline, a bridge, a railroad -
is essential. The terms upstream and downstream refer to the physical se-
quence of production, in which transportation follows production. However,
from a purely economic perspective, interconnection capacity is an input for
the upstream �rms.
In the present environment, a regulator owns the interconnection in-

frastructure, and has to allocate it among the various upstream produc-
ers. The regulator�s objective is not only to implement an e¢ cient alloca-
tion mechanism (which maximizes the rent for the interconnection system�s
owner) but also, to implement the mechanism that maximizes welfare in the
commodity market. The �rst best would be achieved when both e¢ ciency in
the upstream market (achieved under marginal cost pricing) and e¢ ciency in
the allocation mechanism are achieved. E¢ ciency in the allocation of inter-
connection prescribes that a �rm charging a lower price (which, under perfect
competition is equivalent to a more e¢ cient �rm) has priority in the transit
over a �rm charging a higher price (less e¢ cient under perfect competition).
When attaining the �rst best is infeasible, the regulator has to sacri�ce

e¢ ciency in one of the two markets (upstream and interconnection) in favor
of the other.
Given the allocation system announced by the regulator, producers com-

pete in quantities, without being a¤ected by any additional regulatory con-
straints. The regulator�s task consists of modifying the incentive schemes
of the producers through the interconnection capacity allocation, thereby
enhancing welfare. That is, the incentive scheme induced by the intercon-
nection allocation mechanism should aim at increasing the market aggregate
output above the Cournot level - which would prevail in the absence of any
regulatory interventions - bringing it closer to the competitive quantity.
Regulation of the essential facility alone, coupled with competition in the

upstream sector, is common in many network industries. Sometimes, it is the
regulator (or the State) that directly owns the essential facility in some indus-
tries, including electricity, gas, railways, cable-TV, water etc. Often, in these
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industries, the upstream sector is characterized by oligopolistic competition.
The literature on interconnection capacity is mostly applied to electricity

markets. Their scope di¤ers from that of the current paper, in that, most
of them analyze rent-maximizing allocation mechanisms. Joskow and Ti-
role (2000), for example, analyze how two rent-maximizing (in a perfectly
competitive environment) allocation schemes, such as �nancial and physi-
cal transmission rights, perform in an imperfectly competitive environment.
Borenstein, Bushnell, and Stoft (2000) analyze the competitive impact of ad-
ditional transmission infrastructure. Their �ndings are the following. First,
there may be no relationship between the e¤ect of a transmission line in
spurring competition, and the actual electricity that �ows on the line in
equilibrium. Second, limited transmission capacity can give a �rm the in-
centive to restrict its output in order to congest transmission into its area
of dominance. Third, relatively small investments in transmission may yield
surprisingly large payo¤s in terms of increased competition. Along this line,
Stoft (1999) analyzes �nancial transmission rights applied in a generation
market characterized by Cournot competition.
The current paper is similar to the above mentioned papers, in the sense

that the analyzed environment reproduces institutional details that are typ-
ical of the electricity sector. In particular, I assume that, due to physical
reasons, the interconnection is characterized by an upper bound on the net
�ow. That is, the �ows occuring in opposite directions must not di¤er by
more than the constraint. However, the present work di¤ers from the previ-
ous literature, since it assumes that interconnection capacity is not scarce.
The two relevant nodes are always fully interconnected, and the cost of inter-
connection varies. Full interconnection allows me to consider an individual
market, thereby greatly simplifying the model. In this context, I characterize
an allocation scheme maximizing welfare in the overall commodity (electric-
ity) market. At the same time, this work is similar to the above mentioned
literature in the sense that, it refers to a situation in which the interconnec-
tion is characterized by an upper bound on the net �ow.
The structure of the paper is as follows. Section 2 introduces the model,

section 3 provides the results, while section 4 concludes.
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2 The model with one �rm per node

This model stylizes the properties of the interconnection capacity when the
constraint on the �ow is net, the case in electricity transmission lines. In this
case, the transfer cost is paid by �rms in the node whose aggregate export
exceeds aggregate import.
Suppose there are two nodes. The aggregate demand in the two nodes

is of the form P (Q) = A � bq. Each �rm produces both for its domestic
market, and for the other node (we will call it "export"). If import equals
export in each of the nodes, �rms do not need transmission capacity, as long
as there exists an in�nitesimal amount of available transmission capacity. If,
on the other hand, in any node, import and export di¤er, then the �rm in
the node whose export exceeds import needs an amount of transmission ca-
pacity exactly equal to the di¤erence between the exported and the imported
quantities.
Firms face an unlimited amount of transmission capacity, available through

an indirect line that takes a long loop before actually connecting the two
nodes. Through this process, part of the production is lost. This raises the
cost for the producers by a large amount. This assumption rules out the pos-
sibility that the two markets are separated: whatever the output produced
by each of the �rms, there is a single market aggregating the demands and
the productions in the two nodes, with a single price. Assume for the sake
of simplicity that this single price results from an institutional rule in place
in the market under consideration. This rule speci�es that, in the absence of
active transmission constraints that limit the �ow of electricity between the
two markets, prices in the them have to be the same. This institutional rule
ignores the costs associated to losses in the trasnmission line; in other words,
it ignores the transportation costs.
Under a broad range of circumstances, interconnection has a competitive

e¤ect; hence, �rms with market power do not �nd it pro�table to build
it. In this case, however, since the market is fully connected, regardless of
the capacity of the direct transmission line, �rms may �nd it convenient
to actually build the direct transmission line. The direct transmission line
entails a building cost; however, it then reduces the losses (hence, it reduces
the cost). I assume that �rms always �nd it more convenient to build a
direct transmission line, rather than exploiting the available indirect line.
The properly discounted cost of building the line is always less than the extra
costs the �rm incurs when it exploits the indirect transmission capacity.
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Thus, I have established that, when �rms located in one node �nd it
optimal to export more than they import, they optimally build the necessary
capacity to accomodate their decisions.
I now introduce a second available direct line, owned by the regulator, and

managed according to welfare-maximizing criteria. This line directly links
the two nodes. Hence, there is no substantial transmission cost associated to
the usage of this line. The regulator allocates the capacity of the transmission
line it manages among the various generators.
Hence, in order to obtain a given amount of transmission capacity, a �rm

has two alternatives. Either it builds its own transmission line, and uses
it, or it uses the transmission line owned by the regulator, if the conditions
established by the regulator yield a higher pro�t than the individual invest-
ment.
In such a setting, a particular strategic environment is generated, in

which, when import and export di¤er in each node, a marginal increase in
export by the low-export �rm has two e¤ects on the high-export �rm.
First, it decreases the rival�s marginal revenue (the standard Cournot

e¤ect). Second, it decreases its transportation cost. In other words, in spite
of the two products being perfect substitutes, a marginal increase of the
output of the �rm characterized by the lowest export generates a positive
externality on the rival�s cost. If the positive externality on the rival�s cost
exceeds the negative externality on the rival�s revenue, then the marginal
increase of export by the low-export �rm may induce an overall positive
externality on the high-export rival.
The peculiarity of the strategic environment may be summarized as fol-

lows: as long as a marginal increase in output by the low-export �rm gen-
erates a positive externality on the high-export rival, the high-export �rm
regards the two products as strategic complements while the low-import �rm
regards them as strategic substitutes.
Given that it is assumed that saturation of the transmission line never

occurs, the environment I have in mind is captured by the following model.
There are two �rms, i and j; producing a homogenous product, and selling

it into a single market. The �rms�cost function is made up of two compo-
nents: a) an individual component that depends on the output produced by
each �rm, equal to ci and cj per unit produced respectively, b) a cost incurred
by the �rm only if it produces more than its rival. This second component,
assumed to be same for both the �rms, is denoted by the letter c. c is the
cost of building the additional transmission line, per unit of capacity (so that
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the total cost of building k units of capacity is ck)1. Assume, without loss
of generality, that i is weakly more e¢ cient than j; (ci � cj): The individ-
ual component of the cost fucntion is the per-unit generation cost, while the
common component represents the cost of building the necessary transmis-
sion infrastructure for the �rm. Notice that, in this model, the allocation
of the regulator�s transmission line is equivalent, from the �rm�s viewpoint,
to a reimbursement of part of its costs. When �rm i receives no reimburse-
ment from the regulator (i.e., it is not allocated the regulator�s transmission
capacity), the cost function for �rm i takes the following form:

Ci (qi) =

�
ciqi + c (qi � qj) if qi > qj

ciqi otherwise

Each �rm perfectly observes the rival�s cost, and the two contestants play
a game of perfect information, with the following timing:
First, the regulator announces the allocation mechanism. Second, produc-

ers compete à la Cournot (knowing that reimbursement is the only possible
form of intervention by the regulator in the market). Third, reimbursement
is awarded.
Market demand is given by p (Q) = A� bQ: The regulator can reimburse

the common component of the cost c up to a maximal aggregate amount of
t. t has to be allocated between i and j; and the regulator has to decide the
reimbursement criterion in order for social welfare to be maximized. The reg-
ulator does not receive money in exchange for the allocation. The (standard)
reason for this is that inducing an increase in equilibrium aggregate output
yields a higher social welfare than simply appropriating the rent of the �rm.
The awarded reimbursement, denoted ti (qi; qj) and tj (qi; qj) respectively for
�rm i and for �rm j; becomes then solely a function of �rms�production.
The regulator faces the following constraints, in its allocation criterion:
1) ti + tj � t;
2) 0 � ti � max (0; c (qi � qj));
3) 0 � tj � max (0; c (qj � qi))
The simpli�ed version of the model allows to consider a single decision

variable for each �rm, instead of two (output in the two di¤erent markets),
while it preserves the two relevant features of the original scenario:

1Here, a dynamic environment is being approximated by a static model. The investment
in the interconnection line evidently brings about bene�ts in more than one period.
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First, the fact the a portion of the cost is paid only by the high-output
�rm, and only on the di¤erence between the two �rms�output. Second, that
the high-production �rm regards its own product and the rival�s as strategic
complements, while the low-production �rm regards its own product and the
rival�s as strategic substitutes.

2.1 The e¢ ciency benchmark

Social welfare is determined as:

max
qi;qj

Q (A� (A� bQ))
2

+Q (A� bQ)� C (Q)

where Q is the aggregate output produced in the two nodes.
In order to obtain the characterization of the social e¢ ciency benchmark,

we proceed through the characterization of the overall market cost function
C (Q). In general, the cost function results from the aggregation of the
cost functions of the individual �rms operating on the market. However,
in this speci�c case, each �rm�s cost is a function of both �rms� output.
Hence C (Q) = C (qi; qj) : In order to properly characterize the market�s cost
function, I claim that, if qi = qj; then the market�s cost function is given by
C (Q) =

� ci+cj
2

�
Q. If, on the other hand, Q = qi; then the cost function is

C (Q) = (ci + c)Q: We can then characterize the following:

Lemma 1 The market aggregate cost function is given by Q
�
min

� ci+cj
2
; ci + c

��
:

Proof. First, notice that an implication of the lemma is that the cost-
minizing supply schedule prescribes either q�i = q�j ; or q

�
j = 0. Suppose

instead, that at a generic Q0; q0i > q
0
j > 0; q

0
i + q

0
j = Q

0:Then

C (q0) = (ci + cj) qj + (ci + c) (qi � qj)

At an alternative schedule prescribes q00i = q
0
i� �; q00j = q0j+ �; q00i +q00j = Q0

, � units cost ci+cj
2

instead of ci + c: If
ci+cj
2

< ci + c; then the alternative
supply schedule yields a lower cost.
Alternatively, assume q00i = q

0
i+ �; q

00
j = q

0
j � �; q00i + q00j = Q0: Then, � units

cost ci + c instead of
ci+cj
2
: If ci + c <

ci+cj
2
, then this supply schedule yields

a lower cost than the original
�
q0i; q

0
j

�
: Hence, there are no cases in which

q0i > q
0
j > 0 can be the cost-minimizing supply schedule.
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If ci+cj
2
< ci + c; then C (Q) =

� ci+cj
2

�
Q; and the cost-minimizing supply

schedule prescribes qi = qj; if ci+cj
2

> ci + c; then C (Q) = (ci + c)Q:
Following the lines of the �rst part of the proof, it is easy to show that, for
any given Q; reshu­ ing the production among the two �rms increases the
cost with respect to the cost-minimizing schedule (which depends, as just
shown, on the cost parameters).
It is now immediate to characterize the social optimum as the point in

which demand equals marginal cost.

Lemma 2 First-best social e¢ ciency prescribes p = min
� ci+cj

2
; ci + c

�
; and

Q =
A�min

�
ci+cj
2

;ci+c
�

b

2.2 The duopoly outcome: unregulated

In this strategic setting, while the �rm with the lowest production is a¤ected
by the marginal increase of quantity of its rival (the standard negative ex-
ternality), the �rm with the highest production is positively a¤ected (in its
cost structure) by an increase in the rival�s production. In order to ensure
that each �rm produces a strictly positive output, I assume that cj < A+ c:
Firm i�s optimization problem is the following:

max
qi
(A� bqi � bqj) qi �

�
ciqi � c (qi � qj) if qi > qj

ciqi if qi � qj

The reaction functions take the following form:

Ri (qj) =

8<: min
�
(A�ci�bqj)

2b
; qj

�
if �i;q�i�q�j > �i;q�i>q�j

max
�
(A�ci�c�bqi)

2b
; qj

�
if �i;q�i�q�j > �i;q�i>q�j

I restrict myself to the case in which q�UCi > q�j , where q
�UC
i denotes the

optimal outcome in the currently analyzed unregulated Cournot situation,
which turns out to be an equilibrium condition. Hence, i0s reaction function,
for qi � (A�cj)

3b
, is the following:

Ri (qj) =

(
qj if �i;q�i=q�j > �i;q�i>q�j

max
�
(A�ci�c�bqj)

2b
; qi

�
if �i;q�i�q�j > �i;q�i>q�j
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qj =
�
(A�cj�c�bqi)

2b

�
qi =

�
(2A�2cj�2c�4bqj)

2b

�
In principle, there are three possible outcomes:
i) q�i > q

�
j ;

ii) q�i < q
�
j ;

iii) q�i = q
�
j .

Lemma 3 In equilibrium, it cannot be that q�UCi < q�UCj :

Proof. Assume q�UCi < q�UCj : Then, the reaction functions are:

Ri (qj) =
(A� ci � bqj)

2b

Rj (qi) =
(A� cj � c� bqi)

2b

This entails equilibrium values given by:

q�i =
A� 2ci + cj + c

3b

q�j =
A� 2cj + ci � 2c

3b

p =
A+ cj + ci + c

3

q�UCj > q�UCi , cj + c < ci

However, this is a contradiction of i being more e¢ cient than j:
Since Ci (q) � Cj (q) for qi � qj; there does not exist an equilibrium in

which i produces less than j: We are then left with case i), and iii).

Lemma 4 If ci < cj � c, then in equilibrium q�UCi > q�UCj

Proof. Assume q�i > q
�
j : Then, the reaction functions are:

Ri (qj) =
(A� ci � bqj � c)

2b
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Rj (qi) =
(A� cj � bqi)

2b

It follows that in equilibrium:

q�i jq�i > q�j =
A� 2ci + cj � 2c

3b

q�j jq�i > q�j =
A+ ci � 2cj + c

3b

The set of values for which the previous equilibrium is feasible (i.e, it
is internally coherent) is given by q�i given that q

�
i > q�j and q

�
j given that

q�i > q
�
j such that q

�
i given that q

�
i > q

�
j exceeds q

�
j given that q

�
i > q

�
j , and

namely by cj > ci + c

q�UCi =
A� 2ci + cj � 2c

3b

q�UCj =
A+ ci � 2cj + c

3b

For the values at which the equilibrium is feasible, we need to check there
does not exist any pro�table deviations.
I �rst rule out deviations to q�j < q

0
i < q

�
i : Indeed, we know q

0
i =2 argmax�ijq�i >

q�j ; q
�
j = Rj (q

�
i ) : Hence, deviating to q

�
j < q0i < q�i cannot be pro�table for

�rm i:
I now rule out deviations to q00i = q�j . If q00i = q�j =

A+ci�2cj+c
3b

; p =
A�2ci+4cj�2c

3
; and

�i;q�i=q�j =

�
A+ ci � 2cj + c

3b

��
A� 5ci + 4cj � 2c

3

�
=

=
�4Aci + 2Acj � 7cci + 8ccj � 5c2i � 8c2j + 14cicj � Ac+ A2 � 2c2

9b

The deviation pro�t has to be compared with the equilibrium pro�t.
When q�UCi > q�UCj ; q�UCi =

A�2ci+cj�2c
3b

; q�UCj =
A+ci�2cj+c

3b
; p =

A+ci+cj+c

3
;

the pro�t accruing to �rm i is given by:
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�i;q�i>q�j =

�
A� 2ci + cj � 2c

3b

��
A� 2ci + cj + c

3

�
� c

�
cj � ci � c

b

�
=

=
�4Aci + 2Acj + 11cci � 10ccj + 4c2i + c2j � 4cicj � Ac+ A2 + 7c2

9b

As long as cj > ci+c, the deviation is never pro�table. Indeed, �i;q�i=q�j <
�i;q�i>q�j ; implies:

18c (cj � ci)� 9c2i � 9c2j + 18cicj � 9c2 < 0
which never holds.
The following is true

Lemma 5 If cj < ci + c, then in equilibrium q�UCi = q�UCj

Proof. The equilibrium output is given by:

q�UCi = q�UCj =
(A� cj)
3b

It follows that p = A+2cj
3
; and

�i;qi=qj =

�
A� cj
3b

��
A+ 2cj � 3ci

3

�
=

=
�3Aci + Acj � 2c2j + 3cicj + A2

9b

If i deviates, it is not pro�table to deviate to q0i < q�i . Hence, the only
pro�table deviation is to q00i > q

�
i : Given i

0s deviation output exceeds j0s, it
follows that

Ri (qj) given q�i > q
�
j =

(A� ci � bqj � c)
2b

And q�i =
2A�3ci+cj�3c

6b
, p = 2A+3ci+3c+cj

6
. The consistency condition (re-

quiring that in equilibrium q�i > q
�
j ) yields �ci�c+cj > 0: Hence, a su¢ cient

condition for there not to exist a pro�table deviation is that cj > ci + c.
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The deviation pro�t is then given by:

�i;qi>qj =

�
2A� 3ci + cj � 3c

6b

��
2A� 3ci + 3c+ cj

6

�
�c
�
�ci � c+ cj

6b

�
=

=
�12Aci + 4Acj + 6cci � 6ccj + 9c2i + c2j � 6cicj + 4A2 � 3c2

36b

The deviation is not pro�table if and only if:

�9Aci + 3Acj + 6cci � 6ccj + 9c2i + 3c2j � 9cicj + 3A2 � 3c2 < 0
The deviation is never pro�table in this environment
In case cj < ci + c, there are both the equilibria described above.
The intuition behind the equilibria is that, both if q�UCi > q�UCj and if

q�UCj > q�UCi ; the condition for the existence of the equilibria is that �rm i
�nds it e¢ cient or ine¢ cient to mimick �rm j:
For a graphical intuition for the results, consider the following reaction

function, in which the transport cost is null:

Figure 2: Reaction functions, null transport cost

q(i)

q(j) R(i)(q(j)),c=0

R(j)(q(i))

q*(i)
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In that case, the most e¢ cient �rm is producing more than the least
e¢ cient. As the transport cost increases, the quantity produced by the most
e¢ cient �rm decreases, until, for a su¢ ciently high transportation cost, it
hits the output of the least e¢ cient �rm. The following graph describes this
situation:

Figure 3: Reaction functions with di¤erent transport costs

q(i)

q(j)
R(i)(q(j)), c=0

R(j)(q(i))

q(i) c‘‘>c‘>0
q(i), c‘>0

The previous graph displays the reaction functions of the two �rms, and
shows that, for values of c such that ci + c > cj (represented by c0 in the
graph), the equilibrium prescribes q�i = q

�
j . This equilibrium is the same that

would prevail if both �rms had the same cost as the ine¢ cient one.
If ci+ c < cj then q�i > q

�
j , the equilibrium is the same that would prevail

if i�s cost function were c+ ci:

2.3 The joint pro�t maximization in duopoly

Given the positive externality from an increase in rival�s production enjoyed
by the most e¢ cient �rm, there may be scope for e¢ ciency in a cooperative
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game, in which a single decision maker maximizes the joint pro�t of the two
�rms.
When the positive externality o¤sets the standard monopoly ine¢ ciency

(with respect to the situation of duopoly), joint pro�t maximization yields a
more e¢ cient outcome than duopoly.
Joint pro�t maximization entails a market-level cost minimization. Any

level of output is produced using the most e¢ cient resources available on the
market. Hence, the aggregate cost function employed in the social welfare
maximization is the relevant cost function. Denote QJM the level of ouptut
produced under joint pro�t maximization.
Denote �c = cj�ci as the marginal cost di¤erence between the most e¢ -

cient and the least e¢ cient �rm. Notice that, in terms of �c, the assumption
that both �rms are producing a positive output in equilibrium determines
�c < A+ c� ci.
We now characterize conditions under which joint pro�t maximization

performs better than standard competition in terms of e¢ ciency.

Lemma 6 Joint pro�t maximization is more e¢ cient than Cournot compe-
tition:
- when c > �c ; if 3�c > 2 (A� cj) ;
- when �c

2
< c < �c, if 4c��ci > 2 (A� cj)

Proof. The decision maker maximizes:

max
Q
Q

�
(A� bQ)�min

�
ci + cj
2

; ci + c

��
First order conditions are:

(A� 2bQ) = min
�
�

2
; ci + c

�
Second order conditions are always satis�ed.
At the optimum, it has to be:

QJM =
A�min

� ci+cj
2
; ci + c

�
2b

QJMci+cj
2

>ci+c
=
A� ci � c

2b

QJMci+cj
2

<ci+c
=
A� ci+cj

2

2b
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where QJM denotes the optimal output in the joint pro�t maximization.
Output in the cooperative game exceeds the one in the competitive game if:8<: QJMci+cj

2
<ci+c

=
A� ci+cj

2

2b

QJMci+cj
2

>ci+c
= A�ci�c

2b

>

(
QCcj>ci+c =

2A�ci�cj�c
3b

QCcj<ci+c =
2A�2cj
3b

Proposition 7 Given the demand parameters, and the individual marginal
costs, the increase in consumer welfare from joint pro�t maximization in-
creases with c if �c

2
< c < �c; while it decreases with c if c < �c

2
; and it

remains constant if c > �c;
Given the demand parameter, the transportation cost, and the individ-

ual cost of the ine¢ cient �rm, consumer welfare increase from joint pro�t
maximization increases with �c if c > �c, while it decreases with �c if
�c
2
< c < �c.

Proof. It follows directly from computations from the previous results
When the equilibrium is symmetric in both cases, the externality is in-

creasing with the asymmetry, hence the bene�t of internalizing it also in-
creases with the asymmetry. On the other hand, when the equilibrium is
symmetric only in JM, while it is asymmetric in Cournot, the increase in ci
decreases cost by ci in the duopoly, while it decreases overall cost only by
ci
2
in the JM. Hence, when this is the case, asymmetry increases Cournot

output more than it does the JM output.
A similar intuition may be provided for the comparative statics on the

transport cost. If both JM and UC are symmetric, then the outcomes in
each case will depend only on the level of cost asymmetricity, not on the
transport cost. An increase in the transport cost, up to the level in which
they stop being symmetric, does not a¤ect the cost function of each of the
two. However, when JM is symmetric, an increase in transport cost still
does not a¤ect the JPM equilibrium, while it a¤ects the UR (asymmetric)
equilibrium.

2.4 Optimal allocation in duopoly

We now examine how the regulator should optimally allocate the transport
capacity. The timing of the game is the following:
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1) The regulator announces the allocation scheme of the cost reimburse-
ment;
2) Firms compete in quantity;
3) The output is realized, and reimbursement takes place.
The cost function, after the allocation of transmission capacity, for �rm

i is given by:

C (qi) =

�
ciqi + c (qi � qj)� ti (qi; qj) if qi > qj

ciqi otherwise

Denote bqi (qj) and bqj (qi) the best response by i (respectively j) to the
rival�s output when i (respectively, j) is allocated the full transmission ca-
pacity, given by ti (qi; qj) = min

�
c
�
q�i � q�j

�
; t
�
. On the other hand, denoteeqi (qj) and eqj (qi) the best response by i (respectively, j) to the rival�s output

when i (respectively, j) is not allocated the transmission capacity. Finally,
denote q�i and q

�
j the equilibrium output in the overall game.

First, we establish that the least e¢ cient �rm is indi¤erent to the reim-
bursement it receives; hence, the reimbursement for the least e¢ cient �rm
has no e¤ect for the aggregate output produced.

Lemma 8 tj (qi; qj) is irrelevant in determining the outcome of the game

Proof. As previously shown, in Cournot competition without the regula-
tor�s reimbursement, it has to be q�URj = Rj

�
qURi

�
� q�URi ; where Rj

�
qURi

�
is the reaction function of �rm j to the output played by i in the unregu-
lated equilibrium, Ri

�
qURi

�
. At q�URj �rm j0s cost is C (qj) = cjqj, and no

transportation cost is incurred by �rm i: Firm i, on the other hand, incurs
transportation cost c

�
q�URi � q�URj

�
.

When the regulator allocates transportation capacity, it reduces �rm i0s
cost. However, even when j is entirely allocated the transport capacity, for
any qi = qj; C (qi) � C (qj), qj � qi: Given that, in equilibrium, i0s output
exceeds j0s output, it follows that �rm j will not need the reimbursement,
hence its allocation is irrelevant
Under symmetry, Cournot pro�t from an asymmetric outcome decreases

even when the transport cost is entirely reimbursed. Hence, no �rm has an
incentive to deviate from the Cournot outcome. Under the symmetric case,
�rms do not need the interconnection capacity.
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Proposition 9 If qi = qj; then both tj (qi; qj) and ti (qi; qj) are irrelevant in
determining the outcome of the game. The regulator cannot take any e¤ective
actions in the market.

Proof. In Cournot equilibrium, Ri (qj) = qj and Rj (qi) = qi: Hence, �rms
do not need transportation capacity
Hence, under symmetric cost, the regulator cannot modify the outcome

of the game.
However, if costs di¤er between the two �rms, even assuming �rms com-

pete à la Cournot, the regulator can increase market e¢ ciency in two ways.
In a weak way, the regulator may reimburse the input (transportation)

cost of the most e¢ cient �rm. In the aftermath of the reimbursement, the
e¢ cient �rm faces a di¤erent cost structure, and optimizes accordingly. No-
tice that cost reimbursement is bounded by the resources available to the
regulator.

Figure 4: Reaction functions with and without reimbursement

q(i)

q(j) R(i)(q(j))

R(j)(q(i))

R(i)(q(j))
no reimb. R(i) (q(j)), “weak“reimbursement

q*(i), no reimb.
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As a consequence of the regulator�s reimbursement, the e¢ cient �rm de-
creases its cost, hence aggregate output increases, as well as welfare, as shown
in the following picture:

Figure 4 bis: Reaction Functions and Welfare

q(i)

q(j)

Isowelfare
curves

q*(i), no
reimbursement

In a strong sense, through an appropriate allocation of the transport
capacity, a perfectly informed regulator may structure the reimbursement in
such a way that the most e¢ cient �rm produces a higher output than that
of the unregulated situation. The exact process through which that happens
will be clear from what follows. In order to maximize social e¢ ciency only
through the capacity allocation, the regulator has to induce a cost function
of the following form

C (qi) =

8<:
ciqi for qi � qj

ciqi + (c+ ci) (qi � qj) for q � qi > qj
ciqi for qi > q

18



Perfectly informed regulator Preliminarily to obtaining the results, we
derive some general properties. The �rst states that overall welfare increases
with q�i until aggregate output played by the two �rms hits social optimum.

Lemma 10 dS
dqi
> 0 if qi + eqj (qi) � Qeff ; dS

dqi
< 0 otherwise, where Qeff

denotes the previously characterized benchmark of �rst best social e¢ ciency.

Proof. In any equilibrium of the game, the ine¢ cient �rm plays a lower
output than the e¢ cient �rm, thus it bears a null cost for the transportation
capacity, hence it is not a¤ected by the allocation procedure. It follows
that q�j = eqj: In a linear demand system, as long as q0i > qi; q

0
i + Rj (q

0
i) >

qi+Rj (qi) : The fact that q�j = eqj (qi) guarantees that maximization of social
welfare entails picking two di¤erent values of q on the same reaction function.

In the current game, we are assuming that the regulator has a �xed
amount of cost reimbursement, which we consider as sunk cost. Hence, the
regulator derives no direct advantages from withholding part of the alloca-
tion. Denote as t�i (qi; qj) the optimal (�rst best) allocation, and denote as
qFIi ; q

FI
j the equilibrium output under the full information regulator�s optimal

reimbursement scheme. Hence, we can derive the following:

Proposition 11 A perfectly informed regulator may induce the most com-
petitive �rm to produce

q�FIi =

8<:
2A+4cj�6ci

3b
if cj < ci + c

�ci+
cj
2
+A
2
+

p
4c2
i
�4cicj�4Aci�55c2j+2Acj+A

2�88cci+80ccj+8Ac)
6

b
if cj > ci + c

by o¤ering the following reimbursement scheme: t�i (qi; qj) =
�
t for qi � q�i � �
0 for qi < q

�
i � �

if t � q�i � qUi .
If t � q�i � qUi , the most competitive �rm will be induced to produce q��FIi

such that q��i
�
A� bq��i �

A�cj�bq��i
2

� ci �
�
q��i �

A�cj�bq��i
2

� t
�
c
�
= �U

Proof. Solving explicitly for the optimal allocation scheme, we have to
di¤erentiate two cases:
- If cj < ci + c, then in equilibrium qUCi = qUCj =

(A�cj)
3b

; and p = (A+2cj)

3
:
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It follows that

�UCi =
(A� cj)
3b

(A+ 2cj � 3ci)
3

=

=

�
A2 + Acj � 3Aci � 2c2j + 3cicj

�
9b

If allocated the capacity regardless of the output, �rm i will optimally
produce:

bq�i = A� 2ci + cj
3b

R�j (bq�i ) = A+ ci � 2cj
3b

Q =
2A� ci � cj

3b

Aggregate output in this case is given by:

2A� ci � cj
3b

>
2A� 2cj
3b

The di¤erence 2A�ci�cj
3b

� 2A�2cj
3b

represents the weak increase due to the
cost e¤ect of the capacity allocation. Price after the weak increase is given
by:
p =

A+ci+cj
3

: Pro�t after it equals

�i =

�
A� 2ci + cj

3b

��
A� 2ci + cj

3

�
�i =

A2 + 4c2i + c
2
j � 4Aci + 2Acj � 4cicj

9b

The di¤erence in pro�t between the two scenarios is:

�� =
4c2i + 3c

2
j � Aci + Acj � 7cicj

9b

Then, qFIi will solve the following equation:

qFIi

�
A� bqFIi � b(A� cj � bqi)

2b
� ci

�
=

�
A2 + Acj � 3Aci � 2c2j + 3cicj

�
9b
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The solution is:

A� cj
3b

< qFIi <
2A+ 4cj � 6ci

3b

It follows that, as long as ci < cj + c;

qFIi =
2A+ 4cj � 6ci

3b

qFIj =
A� 7cj + 6ci

6b

QFI =
5A+ cj � 6ci

6b

It is now easy to show that a perfectly informed regulator, by awarding
t�i (qi) = 0 for qi <

2A+4cj�6ci
3b

� �; t�i (qi; qj) = t for qi �
2A+4cj�6ci

3b
+ �, can

implement QFI :
- If cj > ci + c; then in equilibrium we have qUCi =

A�2ci+cj�2c
3b

; qUCj =
A+ci�2cj+c

3b
; pUC =

A+ci+c+cj
3

: Hence, qUCi � qUCj =
�ci+cj�c

3b

�Ui =

�
A� 2ci + cj � 2c

3b

��
A� 2ci + cj + c

3

�
� c

�
cj � ci � c

b

�
=

=
�4Aci + 2Acj + 11cci � 10ccj + 4c2i + c2j � 4cicj � Ac+ A2 + 7c2

9b

qFIi solves the following equation:

qFIi

�
A� bqFIi � b(A� cj � bqi)

2b
� ci

�
=

=
�4Aci + 2Acj + 11cci � 10ccj + 4c2i + c2j � 4cicj � Ac+ A2 + 7c2

9b

q =
�ci + cj

2
+ A

2
+

p
4c2i�4cicj�4Aci�55c2j+2Acj+A2�88cci+80ccj+8Ac)

6

b

Even in this case, the allocation is easily implementable by the regulator.
Finally, if the reimbursement in the hands of the regulator is not su¢ cient

to fully cover the transportation cost of the e¢ cient �rm, then the most
e¢ cient �rm has to pay part of the transport cost, and qFIi solves the following
equation:

21



q��i

�
A� bq��i �

A� cj � bq��i
2

� ci �
�
q��i �

A� cj � bq��i
2

� t
�
c

�
= 0

The intuition behind the result is the following. Given that i has been
awarded the available transmission capacity, @�

@q
> 0; eqi � q � bqi; @�@q < 0;

q � bqi: At bqi (qj) ; the best response given that the reimbursement has been
allocated to i; �rm i would maximize pro�t given the transportation alloca-
tion. At the optimal point, output is increased with respect to the unregulated
benchmark, in which no �rm is provided with transmission capacity, and so is
i0s pro�t. However, social e¢ ciency is increased by further increasing output
beyond the optimal point. By denying the reimbursement unless q�i > bqi;
i.e, the equilibrium output is above the individually optimal point given the
reimbursement rules, the regulator can increase social welfare. The reason
why this is feasible for the regulator is that this reimbursement rule makes
q0 = bqi (qj) - the optimal point given the allocation of transport capacity -
an unfeasible alternative, since at q0 i is not allocated the reimbursement;
hence, it can only deviate to eqi (qj) - the optimal point given no allocation
(which yields a lower pro�t). The regulator exploits the di¤erence

� (bqi (qj))� � (eqi (qj)) = �
to induce i to play q�i > bqi (qj) until � (bqi (qj)) � � (q�i ) = � (if eqi (q�i ) + q�i <
Qeff

The following picture identi�es the isopro�t for �rm i and the isowelfare
curves:
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Figure 5: Reaction functions, isowelfare, and isopro�t

q(i)

q(j)

Isowelfare
curves

q*(i), no
reimbursement

The regulator attains the equilibrium point at which, within the set of
allocations that guarantee to the �rm a payo¤ at least as high as in the case
without reimbursement, guarantees to �rm i the same pro�t it would get
without reimbursement
Notice that, in this case, the regulator withdraws some of the intercon-

nection capacity for certain out-of-equilibrium values in order to align the
e¢ cient �rm�s behavior with a socially desirable one. In the result, the out-
side option for the players not to be subject to any regulatory constraint
by withdrawing the option of receiving the transmission capacity allocation
plays a fundamental role.
Ine¢ ciency in the unregulated market is due both to the standard market

power ine¢ ciencies related to Cournot duopoly, and to the cost-externality
of the ine¢ cient �rm on the e¢ cient one. The regulator cannot directly solve
the externality (this would entail increasing the production of the ine¢ cient
�rm); however, its reimbursement may mitigate it, or even indirectly solve
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it (as long as the sum to be allocated is su¢ cient). By mitigating the exter-
nality, the regulator increases the pro�t of the e¢ cient �rm. The regulator
can appropriate the gain in pro�t obtained by the most e¢ cient �rm in the
aftermath of the reimbursement, through the threat of not awarding such
reimbursement. The regulator "transforms" the appropriation of pro�t into
appropriation of consumer welfare, by requiring a higher production of the
e¢ cient �rm.
The increase in output hence depends on the bene�ts induced by the

regulator in alleviating the externality. When the externality does not exist
(in the case of equal e¢ ciency), then the regulator�s reimbursement is of no
use, hence it cannot intervene in the market.
For example, as long as cj < ci + c, the price under full information is

pFI = A� bQFI = A
6
� cj

6
+ ci. Since marginal cost is given by ci+ c, a su¢ -

cient condition for QFI to remain unmodi�ed under the assumption that the
regulator has to build the transmission line for the market is the following:
pFI < MC, or A > 6c + cj . Under this assumption, the marginal bene�t
of the addition in transmission capacity exceeds its marginal cost, which in-
cludes also the building cost2. Hence, the regulator�s direct intervention in
the market is (weakly) welfare-maximizing, with respect to standard nodal
pricing, even if the regulator has to build the transmission capacity before
allocating it. To grasp an intuition for the result, consider that the reim-
bursement may be regarded as a subsidy, and it is well known that subsidies
may be welfare-enhancing under imperfect competition.
As a last comment, we notice that, in this environment, the e¤ectiveness

of the regulator�s intervention crucially depends on the asymmetry in the
market. In a very asymmetric market, the scope for the regulatory interven-
tion is broader than in a symmetric market.

3 Duopoly in each market

3.1 The unregulated benchmark

Assume now a di¤erent market structure. Two �rms produce in each node.
The two producers located on the same node have exactly the same pro-
duction cost function, but production costs of producers located in di¤erent

2This is true under the assumption that public funds are costless to the regulator
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nodes may di¤er. Given that the transportation constraint is net, the trans-
mission cost is paid only by �rms located in the node in which the highest
aggregate output is produced. It is still the case (and will be formally proved
in what follows) that �rms in the least e¢ cient node are producing a lower
output than �rms located in the most e¢ cient one, hence only the most ef-
�cient �rms, denoted i, will have to pay the transportation cost. Each �rm
pays a transportation cost equal to what I believe to be the most appropriate
measure of the marginal contribution �rm i1 makes to the total transporta-

tion cost, given by max
��
q1i �

q1j+q
2
j

2

�
c; 0
�
: With this formulation, �rm i1

does not pay any cost, if 2q2i = q1j + q
2
j . In words, �rm i1 is not paying

any costs if, assuming i2 produced exactly as much as i1; the i node would
produce as much as the j node, and thus it would not pay any interconnec-
tion costs. For each additional unit with respect to the one that, if exactly
matched by i2; would entail no transportation cost for node i, then �rm i1 is
paying the transport cost c: The same exact argument holds for �rm i2:
In the stylized model, assume there are two exactly symmetric �rms i;

denoted i1 and i2; with production cost ci; and two �rms j; denoted j1 and
j2; whose production cost is cj: Following the previously expressed argument,

the transport cost is given by C (q1i ) = max
��
q1i �

q1j+q
2
j

2

�
c; 0
�
:

The incentives involved in the current unregulated game are the same as
in the two�monopolies game, with the addition of the standard incentives
involved in the Cournout competition with substitute products.
First, we explicitly characterize the Cournot equilibrium of the unregu-

lated game without reimbursement.
Firm i1(2) is maximizing:

max
q
1(2)
i

�
A� bq1i � bq2i � bq1j � bq2j

�
q
1(2)
i � ciq1(2)i �max

��
q1i �

q1j + q
2
j

2

�
c; 0

�
Firm j1(2), in its turn, is maximizing:

max
q
1(2)
j

�
A� bq1i � bq2i � bq1j � bq2j

�
q
1(2)
j � cjq1(2)j

The reaction functions of the two �rms are portrayed in what follows:

Ri1
�
q2i ; q

1
j ; q

2
j

�
=

8<:
qj if �i;q1�i =q1�j � �i;q1�i >q1�j

max

�
(A�cj�c�2bqj�bq2i )

2b
; qj

�
if �i;q1�i =q1�j � �i;q1�i >q1�j
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Ri2
�
q1i ; q

1
j ; q

2
j

�
=

8<:
qj if �i;q2�i =q1�j � �i;q2�i >q2�j

max

�
(A�cj�c�2bqj�bq1i )

2b
; qj

�
if �i;q2�i =q1�j � �i;q2�i >q2�j

Rj1
�
q1i ; q

2
i ; q

2
j

�
= Rj2

�
q1i ; q

2
i ; q

1
j

�
=
A� cj � bq1i � bq2i

3b
We will distinguish the equilibria that can possibly emerge in this game

into three kinds of equilibria:
-the fully symmetric equilibrium, in which q1�i = q2�i = q1�j = q2�j ;
-the partially symmetric equilibrium, in which �rms having the same

e¢ ciency produce the same output, q1�i = q2�i 6= q1�j = q2�j ;
-the asymmetric equilibrium, in which q1�i = q2�i = q1�j 6= q2�j

Lemma 12 If cj � ci + c; then a symmetric equilibrium exists, in which:
q1�i = q2�i = q1�j = q2�j

Proof. In a symmetric equilibrium, it has to be that:

q1�j = q2�j = q1�i = q2�i =
A� cj
5b

Assume q2�i + q
1�
j + q

2�
j = 3q1�j ; Then, it must be that

q1j = q
2
j = q

2
i =

A� bq1i � cj
4b

Firm i�s reaction is the following:

Ri1
�
q2i ; q

1
j ; q

2
j

�
=

8<:
A�bq1i�cj

4b
if �i;q1�i =q1�j � �i;q1�i >q1�j

max
�
(A�ci�c�3bqj)

2b
; qj + �

�
if �i;q1�i =q1�j � �i;q1�i >q1�j

In equilibrium with q�i > q�j ; it has to be that q
�
j =

A+ci+c�2cj
5b

, and
q1�i =

A�4ci�4c+3cj
5b

. The consistency condition in the previous equilibrium
with q1�i > q1�j requires cj > ci+ c. Hence, if the consistency condition is not
holding, or

cj < ci + c

the symmetric equilibrium may emerge as the outcome of the game.
We now pass to examine the partially symmetric equilibrium.
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Lemma 13 If cj > ci + c; then a partially symmetric equilibrium exists, in
which: q1�i = q2�i > q1�j = q2�j

Proof. The partially symmetric equilibrium is given by: q1i = q
2
i 6= q1j = q2j :

In this equilibrium, the reaction functions are:

q1j = q
2
j =

A� 2bq1i � cj
3b

q1i = q
2
i =

A� 2bq1j � ci � c
3b

The e¢ cient �rms play:

qi =
A� 3ci � 3c+ 2cj

5b

qj =
A+ 2ci + 2c� 3cj

5b

In this equilibrium, we have q�j =
A�3cj+2ci+2c

5b
, and q�i =

A+2cj�3ci�3c
5b

. The
consistency condition in the previous equilibrium with q1�i > q1�j requires

cj > ci + c

We now state the general condition for the existence of the equilibrium

Proposition 14 If cj > ci + c; there exists a unique equilibrium, in which
q1�i = q2�i > q1�j = q2�j ;
If cj � ci + c; there exists a unique equilibrium, in which: q1�i = q2�i =

q1�j = q2�j
No other equilibria exist

3.2 Duopoly in each market: a perfectly informed reg-
ulator

A perfectly informed regulator aims at maximizing overall welfare.
In any equilibrium, the ine¢ cient �rms, which do not pay the transporta-

tion cost, and hence are not interested in the regulator�s reimbursement, play

q1j = q
2
j =

A� bq1i � bq2i � cj
3b
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Clearly, social welfare increases with q1i and q
2
i . Also, given the symmetric

structure of the �rms involved, optimal allocation by a perfectly informed
regulator involves q1i = q

2
i

We look for a unique Nash equilibrium of a game in which at �rst the regu-
lator allocates the reimbursement criterion, then �rms compete à la Cournot,
and �nally, production takes place.
For the equilibrium to be unique, it has to be that �i given that i is

allocated the reimbursement equals the pro�t i would get without the reim-
bursement being obtained; on the other hand, the pro�t �rm i gets given
that it is allocated the reimbursement equals the pro�t i would get with the
reimbursement being obtained. The pro�t emerging from the equilibrium
without reimbursements is the following.
If cj � ci + c; then the equilibrium in the absence of reimbursement

prescribes q1�i = q2�i = q1�j = q2�j =
A�cj
5b
, and p = A� 4bA�cj

5b
=

A+cj
5

�1i = �
2
i =

�
A+ cj
5

��
A� cj
5b

� ci
�
=

=

�
A+ cj
5

��
A� cj � 5bci

5b

�
=
(A+ cj) (A� cj � 5bci)

25b

In equilibrium, it has to be that

p�q�i � q�i ci =
(A+ cj) (A� cj � 5bci)

25b

and

p� = A� b
�
2q�i � 2

A� 2bq�i � cj
3b

�
:
Hence, the regulator solves the following equation:

q�i

�
A� b

�
2q�i � 2

A� 2bq�i � cj
3b

�
� ci

�
=
(A+ cj) (A� cj � 5bci)

25b

q�i =

�
2cj+3ci�5A

3

�
�
q

101A2+19c2j+45c
2
i�100Acj�90Aci�5Abcj�5bcicj

45

�20b
3

We have thus proved the following:
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Proposition 15 A perfectly informed regulator may induce the most e¢ -
cient �rms to produce

q�i =

8>><>>:
�
2cj+3ci�5A

3

�
�

r
101A2+19c2

j
+45c2

i
�100Acj�90Aci�5Abcj�5bcicj

45

�20b
3

if cj < ci + c

�ci+
cj
2
+A
2
+

p
4c2
i
�4cicj�4Aci�55c2j+2Acj+A

2�88cci+80ccj+8Ac)
6

b
if cj > ci + c

by o¤ering the following reimbursement scheme:

t�i (qi; qj) =

�
t for qi � q�i � �
0 for qi < q

�
i � �

if t � q�i � qUi .

Notice that, in the duopoly case, the cost externality is more signi�cant
than in the monopoly case (the di¤erence in output between the e¢ cient
and the ine¢ cient �rms is larger under duopoly than under monopoly, for a
given ci and cj; hence, the regulator, for a given ci and cj, has more room
for intervening in the market under duopoly than under monopoly.

4 Conclusions

The paper shows that, when the interconnection cost is paid only by the
node in which export exceeds import for an amount equal to the net �ow,
the equilibrium under nodal pricing (the prevailing market design in the
electiricity industry) may prescribe an ine¢ ciently low output. This is due
to the positive externality that an increase in output in the import-node
would generate on the cost function of the export node.
In this context, a direct intervention of the regulator in the allocation

of transmission capacity may be bene�cial to social welfare, both under the
assumption that the trasmission line is available to the regulator at no cost,
and under the assumption that the regulator has to build it. The regulator�s
intervention in allocating the transmission capacity cannot directly solve the
externality, since the regulator�s o¤er has no appeal on �rms in the import
node, which do not need interconnection capacity. However, by allocating the
available interconnection capacity, the regulator achieves the same outcome
as though the externality were solved. Indeed, it eliminates the extra cost
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on the excess export, by saving the most e¢ cient �rm the cost of building
its interconnection infrastructure, meanwhile contributing to reducing the
Cournot market power distortion. When �rms are completely symmetric,
the net-�ow externality is absent.
Since the ability of the regulator to limit Cournot market power comes

because of the bene�ts it provides �rms in indirectly eliminating the net-�ow
externality, when such externality is absent, the regulator has no room for
intervention even in limiting market power..
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