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Abstract: The benefit to end-users of electricity mainly in terms of low prices is strictly related to 
the interaction among the consumers themselves and the retailers. The literature on retail 
competition has highlighted possible distortions in the market outcomes due to unresponsive 
demand and boundedly rational consumers. Hence a model appropriate to represent this aspect of 
the market is needed. The paper proposes a general model of the interaction among retailers and 
consumers in the electricity market based on the theory of multi-agent systems. The objective is to 
incorporate different assumptions on the behavior of the players that correspond to different levels 
of interaction in determining the market outcomes. The model is validated interpretively by the 
results provided in terms of game theory equilibrium. The results of an extensive set of simulations 
on a population of 1000 consumers is presented and discussed. 
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1. INTRODUCTION 
 

Deregulation aims at providing market-based efficient electricity prices to 
consumers. Wholesale competition is enhanced, on the supply side, by 
participation of several generations firms, and, on the demand side, by promoting 
consumer choice and retail competition. An extensive literature has grown up on 
the vertical relations between markets, discussing the opportunity to pass the Real 
Time Price (RTP) signals generated in the wholesale market on to the final 
consumers. Recently, Borenstein [1, 2] studied the RTP-induced wealth transfers 
from producers to consumers; Holland and Mansur [3] analyzed the short-run 
effects of time-varying prices on electricity load, prices, consumer surplus, 
generator profits, efficiency, and emissions. Other works have focused on the 
measurement of consumer response to real time rates (e.g., Faruqui and George, 
[6]). 

Moreover, several works have addressed the issue of electricity market 
efficiency under retail competition, together with the problem of unresponsive 
consumers ([8, 11]). In particular, Borenstein and Holland [8] have shown that 
when a part of the demand is insensitive to wholesale price variations, retail 
competition would fail to achieve the second-best optimum, attainable by a 
regulator with perfect information on the demand curves. Joskow and Tirole [11] 
have stated that if retailers are able to measure real time consumption for each 
consumer, this distortion still holds if consumers are assumed to be heterogeneous 
and boundedly rational. Though, a much little attention has been given to the 
modeling of the retail market itself, considering the consumer choice between 
alternative pricing schemes, and the consequence of this behavior on retailers’ 
strategies.  

 The most important data which characterizes consumer heterogeneity is the 
load profile, i.e. the hourly distribution of his consumption. In fact, a basic 
challenge for retailers is competing for the more convenient consumers from a 
load profile point of view. The identification of the cheaper consumers calls on 
the need of installing proper metering systems, in order to compute the actual 
average cost of serving consumers with different load profiles. 1  Retailers 
strategies are strictly related on whether it is optimal to pass on to the final 
consumers the wholesale price signal or to offer a different price schedule. To 
simplify the analysis, the question may be whether to offer RTP, Time of Use 
(TOU) or flat rates. then, it is important to understand how consumers will self-
select to these two options.  

RTP differs from TOU rates in that it is based on actual (as opposed to 
forecasted) prices with may fluctuate many times a day and are load-sensitive, 

                                                           
1 Hunt (2002) is a good reference for the description of retail competition challenges. 
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rather than varying with a fixed schedule. Though RTP is more efficient, TOU 
have been more widely used and accepted, in part because it is easier and less 
costly to implement. The consumer choice between these two options is related to 
risk management and unexpected fluctuations in load profiles and prices. When it 
comes to the choice between TOU (or RTP) and flat rates, which is the focus of 
our work, the average load profile becomes the most important variable to take 
into account, together with the potential elasticity of substitution across different 
pricing periods. 

Under the hypothesis of hourly wholesale pricing, we can start pointing out 
two basic prediction of the economic theory.  

A) Within a perfect competitive framework, a flat rate option is never offered 
by the retail market if switching to time varying prices does not imply any 
additional transaction costs to the consumers [8]. This result holds because, under 
the zero profit assumption of the retail side, the flat rate would simply be a 
weighted average of real time wholesale costs of serving flat consumers. To better 
understand the statement, suppose there are only two time-periods. If there is no 
risk aversion, all consumers whose load is higher during the cheapest period 
would save money by selecting the real time option; but this would mean an 
increase in the flat rate since the relative weight of the cheapest period would 
decrease. Then, more consumers would prefer to switch to real time pricing. All 
consumers will end up by selecting real time price, except the one who has the 
heaviest consumption during the more expensive period, and the latter would be 
indifferent between the two options. This is also the unique Nash equilibrium of 
the game, obtained by iterative elimination of dominated strategies. 

B) Suppose that there are only 2 retailers in the market. Since they would 
engage in price competition (they have no constraints on how much they can buy 
from the wholesale markets), the result under uniform prices would be the 
Bertrand paradox, so retailers will make no profit. The possibility of price 
discrimination among consumers with different load profiles offering different 
price schedules may however produce positive profits for retailers. 

As stated before, limited work has been devoted to this issue. This is partly due 
to the fact that it is not easy to give a specific mathematic model for the complex 
interaction between different players in a competitive electricity market. 
Nowadays, multi-agent approaches have attracted a lot of research interest when 
studying the power market problems. In a multi-agent approach, the players of the 
studied case are modeled as intelligent agents, who have the ability to react to the 
environment according to their past experience. This kind of approach is attractive 
because it is more practical to capture the try-and-error behavior mechanism of 
the market players without the need of an explicit mathematic model. 

Nowadays, a lot of electricity market simulations have been carried out based 
on a multi-agent model using reinforcement learning algorithm since the 
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autonomous agents have the ability to react rationally according to their past 
experiences. This kind of models is especially suitable to the electricity markets 
where there exist a lot of autonomous agents such as generators, retailers and 
customers. Most of the works have focused on the modeling of the power 
exchange and mainly on generators strategies. Bagnall and Smith [14] and Bunn 
and Oliveira [15] discussed alternative market structures in the context of the UK 
electricity market; Xiong et al. [5] compared alternative auction mechanisms, i.e. 
the uniform price and pay-as-bid electricity auction markets; Watanabe et al. [13] 
studied the problem of congestion management and on its effects on generators 
and distributors companies’ strategies. Fujii et al. [16] analyzed the pricing 
processes modeling the strategic bidding of the demand side on the basis of the 
utility function of customers. In addition, some software based on multi-agent 
model is available, for example MASCES: a multi-agent system that simulates 
competitive electricity markets [17]. However, to our knowledge, no works 
focused on retail competition and in the modeling of the characteristics of end 
customers. 

In this paper, we are interested in describing the behavior of retailers and 
heterogeneous consumers within a framework of retail competition, interpreting 
the prediction from the multi-agent model in terms of equilibrium, provided by 
game theory. This framework allows capturing the idea that agents act rationally 
in the market but need time to learn their optimal strategies from the experience.  

The work is organized as follows. Next section introduces the multi-agent 
model for retail market studies and also describes in details the retail market 
structure and section 3 forms the models for consumers and retailers and section 4 
illustrates the market analysis provided with simulation results. Finally, section 5 
summarizes the main insights from the analysis. There is also a list of symbols 
and notations at the appendix section 6. 
 
2. MAS FOR RETAIL MARKETS STUDIES AND RETAIL 
MARKET STRUCTURE 
 
2.1 MAS FOR RETAIL MARKETS STUDIES 

 
We resort to multi-agent approach for modeling the interaction among the 

sellers (the retailers) and the buyers (the consumers) in competitive electricity 
markets. An agent is a rational entity who knows how to make his choice based on 
his past experience. Multi Agent System (MAS) is a system composed of a 
population of agents simultaneously pursuing individual objectives. In order to 
develop their best choice among a set of actions, the agents adjust their behavior 
by reinforcement learning algorithms. The basic intuition underlying any 
reinforcement learning algorithm is that the tendency to implement an action 
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should be strengthened if it produces favorable results and weakened if it 
produced unfavorable results [4].  

The appeal of using a multi-agent approach is related to the simplified 
assumptions on agent behavior. For example, when consumers have to make their 
choices among alternative price schedules, they may not know exactly their load 
profile and the price variations at any time, but they certainly know the total bill 
they have to pay. As to the retailers, they may choose their strategies by simply 
observing their effect on their profits. The idea is that agents can learn from their 
past strategies; sometimes they may choose a wrong option, but they are able to 
learn from their own errors. This idea can be computationally implemented by 
using a Q-Learning algorithm. 

Q-Learning algorithm is a kind of reinforcement learning algorithm proposed 
by Watkins for solving the Markovian Decision Problems (MDPs) with 
incomplete information [4]. It does not need an explicit model of its environment 
and can be used on-line to find the optimal strategy through experience obtained 
from the direct interaction with its environment.  

The Q-Leaning algorithm can be mathematically formulated as follows. 
Assume that an agent interacts with its environment at each of a sequence of 

discrete time points ntttt ,...,, 10=  Let },...,,,{ nssssS 321= be the finite set of 
possible states of the environment and  },...,,,{ maaaaA 321=  be the finite set of 
admissible actions the agent can take. At each time step t , the agent senses the 
current state Ssts ∈=  of its environment and on that basis selects an action 

Aata ∈=  (Figure 1). As a result of its action, the agent receives an immediate 
reward 1+tr , and the environment’s state changes to the new state Ssts ∈′=+1 , with 
a transition probability )(assP ′ .             

 

                                                           
 

Figure 1. Agent’s interaction with the environment 
 

The objective of the agent is to find an optimal policy As ∈)(*π  for each state 
s  to maximize the total amount of reward it receives over the time span 0ttT n −= . 

Agent 

action 
ta  

Environment 

reward 
tr  

state 
ts  

1+ts  

1+tr  
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Q-Leaning algorithm provides an efficient real time approach to determine the 
optimal policy by estimating the optimal Q-values ),(* asQ  for pairs of states and 
admissible actions. 

The Bellman optimality equation for ),(* asQ is given as follows [4], 
 
        ∑

′ ′′′ ′′+=
s

a
ssss asQRaPasQ )],()[(),( **

a
maxγ          (1) 

 
where 1+′ = t

a
ss rR  is the immediate reward from taking action a  in the state s  and 

transitioning from state s   to s′ , a′  is the admissible action in the new state s′ , 
and )( 10 ≤≤ γγ  is a scaling factor used to discount the future rewards. If γ  is 
small, it means that the expected future rewards count for less. 

Any policy selecting actions that are greedy (always select the action with the 
greatest reward) with respect to the optimal Q-values is an optimal policy [5]. 
Thus, the optimal policy is 

 
         )),(()( ** asQs

a
maxarg=π                                (2) 

 
Without knowing the transition probability )(aP ss ′  the Q-Learning algorithm 

can find the ),(* asQ  in a recursive manner by using the available information ts , 
ta , 1+ts   and 1+tr . 

The updating rule for Q-Learning can be explained as: 
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where  )( 10 ≤< αα  is the learning rate, ),( asQt  and ),( asQt 1+  are the Q-values 

for state-action pair ),( as  at time t  and 1+t , respectively, and ),( asQtΔ  is given 
by: 

 
      ),()]},([max{),( asQasQrasQ ttt

a
tt −′+=Δ +

′
+ 11 γ    (4) 

 
The learning rate α  reflects the degree to which estimated Q-values are 

updated by new data. High values imply more rapid updates, with a risk of 
instability. 
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If the Q-values for each admissible state-action pair ),( as  is visited infinitely 
time, and the learning rate α  decreases over the time step t  in a suitable way, 
then as ∞→t , ),( asQt  converges with probability one for all admissible state 
action pairs.  

 
2.2 RETAIL MARKET STRUCTURE 

 
We consider that retailers buy electricity in the wholesale power exchange and 

we assume that there are no other costs in serving electricity to the final consumer 
other than the wholesale cost2. To further simplify the analysis, even if of course 
the method proposed can be applied to more general context, we assume there are 
only two pricing periods for each day, for example daily hours (D) and night 
hours (N), while retail prices are assumed to be updated on a weekly basis. The 
average weekly wholesale prices during the day and during the night are defined 
as PDW and PNW respectively. We further define the everyday system real time 
price on the following basis. 
 The system real time prices (PD, PN) change around the weekly average and 
are related to the variations in the system load profile. Defining the load profiles 
LD and LN as the percentage of every consumption during the day and night 
respectively, we write the expression of real time prices as follows: 
 

PD = PDW + (LD –LDW) · PDW + ePD  (5) 
PN = PNW - (LN –LNW) · PNW + ePN   (6) 
 

 With the terms ePD and ePN, we introduce a random variation in prices. We 
assumed their mean values to be equal to 0, and their distribution to be uniform 
over the interval U[-δPD(N)· (PD(N)W); δPD(N)· (PD(N)W)], whereδPD(N) is a 
parameter which express the degree of random volatility in the wholesale prices. 

For representing the demand in the market, we consider 1000 consumers, 
defined as heterogeneous in terms of load profiles, but homogeneous in terms of 
total units of electricity consumption. To model load profiles heterogeneity and 
variability, we resorted to the following assumptions: 

1) the individual load profile changes everyday, but the weekly average 
individual load profile is fixed; 

2) since all customers have the same total level of consumption, the system 
load profile is simply the average of each consumer’s load profile. Thus 
we modeled heterogeneity assuming that the weekly average individual 

                                                           
2 Since the paper focuses on the comparison of different tariff structures (Flat, Time-of-Use, Real-
Time pricing), this simplifying assumption – which is often used in the literature (see Borenstein 
and Holland, 2004) – does not affect our analysis unless other retailers’ costs (such as billing) are 
themselves affected by the type of tariff used. 
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load profile is distributed around the system average load, such that LiDW = 
LDW + eW (with eW satisfying uniform distribution U[-δW· LDW; δW· LDW], 
whereδW is a parameter which express the degree of random volatility in 
the average weekly load; 

3) the ith consumer load profile changes around the weekly average: LiD = 
LiDW + eD (with eD satisfying uniform distribution U[-δD· LiDW; δD · 
LiDW], whereδD is a parameter which express the degree of random 
volatility in the average weekly load of the ith customer.  

 The parameter eW ensures consumers’ heterogeneity around the system 
average, while the parameter eD attributes a daily variability to the individual load 
profile. 
 
3. MODELS FOR CONSUMERS AND RETAILERS 
 
3.1 Model of the behavior of consumers 

 
Consumers compare their bills under alternative pricing schemes, and make 

their choices according to what happened in the past. The basic idea is that when 
they choose their pricing scheme they only have some expectation on how much 
they will be paying, and when they receive the bill they will update these 
expectations and their future choices. In formulas, the (weekly) bill (negative 
reward) of each consumer is computed as follows: 

 
 Rcon = -1· 7· (PD_ret · LDW + PN_ret · (1-LDW))   (7) 
 

Where, Rcon is a 1000*1 dimension vector denoting the 1000 consumers reward 
and PD(N)_ret are the retail prices paid.3 The LDW is a 1000· 1 dimension vector to 
denoting the 1000 consumers’ individual average weekly daily load profile. 

Another strategic possibility for a consumer when real time pricing is adopted 
would be modifying his load profile in response to price signals, shifting part of 
the consumption from the more expensive to the cheapest time period (i.e. from 
the day to the night). This elastic behavior is accounted for through a parameter 
dWM as the maximum percentage of the daily load he/she may be willing to shift in 
order to save money (since in our model day price is always more expensive than 
night price). 

 
                                                           
3 Note that retail price is constant over a week, and that if PD_ret = PN_ret the consumer is under flat 
rate. We should also note that, although a consumer selects a price option once a week, the reward 
is calculated everyday, because the load profile of each consumer and the system real time price 
change everyday. The aim of each agent is to maximize his reward (minimize his bill) during the 
long run (or one month in our study case). 
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3.2 Model of the behavior of retailers 
 
In our model, we restricted the analysis to only 2 retailers for sake of simplicity. 

This assumption is fairly realistic when we consider a market where a local 
monopoly has been in place for a long time. Retailers have to decide prices (flat or 
time-of-use) once a week. We consider as the decision variable for the retailer the 
markup with reference to the wholesale cost. 

Thus, if the retailer offers a flat rate, the price is calculated by: 
 

 PF_ret= PFW · (1+ΔF)      (8) 
 

where ΔF can assume a discrete number of values, which is the action set of the 
retailer. 

When a retailer offers time-of-use prices, there are two decision variables, 
because he needs to fix the mark up for both day and night prices.4 

 
   PD_ret= PDW · (1+ΔD)      (9) 

 PN_ret= PNW ·  (1+ΔN)      (10) 
 

In this case, the possible strategies are { }NDS Δ×Δ= . 
To compute the everyday profit of retailer i, we must consider how many 

consumers (and which consumers) will select his proposed tariff. The reward 
(Rret1) can be written as follows: 
 
  Rret1 = (PD_ret1 - PD) ·  ( ∑

∈ 1reti
 LiD)+ (PN_ret1 - PN) · ( ∑

∈ 1reti
 LiN) (11) 

 
When the tariff is flat, it means that PD_ret1 and PN_ret1 are equal, and the reward 

(Rret2) can be rewritten as follows: 
 
 Rret2 = PF_ret2 · ∑

∈ 2reti
 (LiD + LiN)- PD · ( ∑

∈ 2reti
 LiD)- PN · ( ∑

∈ 2reti
 LiN) (12) 

 
4. RETAIL MARKET ACTIVITIES 
 

In order to process our multi-agent simulation, we first need to define the 
system real time prices and consumers load profile.  

Table 1 describes four different average load profile and prices scenarios, 

                                                           
4 In this case one of the make ups may even be negative: a higher (or lower) price difference 
between the two time periods may attract consumers with certain load profiles. 
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corresponding ideally to four types of weeks. We assumed to have a higher daily 
price in weeks corresponding to the highest daily consumption, as typically 
observed in real power exchange markets.5 When we assume perfect competition 
in the retail market (as described in the introduction section), we are able to 
compute the weekly flat rate charged to final consumers when all consumers 
select flat prices: 

 
  PFW = PDW · LDW + PNW · LNW                (13) 
 

 
Table 1. Typical weeks for the various scenarios 

 
  System load profile 

day, night 
Average flat rate 

if all consumers select flat rate 

Week 1 average:  
(PDW = 12, PNW = 2.4) 

LDW = 65%, 
LNW = 35% 

 
8.64 

Week 2 average: 
(PDW = 8, PNW = 3) 

LDW = 55%, 
LNW = 45% 

 
5.75 

Week 3 average: 
(PDW = 14, PNW = 2.5) 

LDW = 69%, 
LNW = 31% 

 
10.435 

Week 4 average:  
(PDW = 10, PNW = 2) 

LDW = 60%, 
LNW = 40% 

 
6.8 

 
 Figure 2 shows the consumers weekly average load profile under these 4 
scenarios, and help to understand consumer heterogeneity. Figure 3 shows the 
system load profile and corresponding everyday real time prices when random 
terms (the random load fluctuation percentage eW /eD) are set to 0.2 and the 
maximum willingness (dWM) to shift consumption across time periods is 20%. 

                                                           
5 It may be worth to recall that the choice of the week as the relevant time dimension for retail 
prices update is made for sake of simplicity, and here the idea of having different week with 
different load distribution should reflect the fact that typically the peak load problem may be more 
serious in specific periods or seasons. 
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Figure 2. Consumers’ average load profile for the four scenarios 

 
 

 
 Figure 3. System average load profile and real time prices 

 
We consider here three different situations in order to illustrate the behavior of 

consumers and retailers in a competitive electricity market. First, only the 
consumers are modeled as agents and the retail side is assumed to be zero profit. 
Then, only the retailers are modeled as agents and the consumers always make the 
“right” choice according to their load profile as an assumption. These two 
situations, though not completely, are useful as references cases for our last 
situation, in which, both consumers and retailers are considered simultaneously as 
agents. 
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4.1 Consumers are agents, retailers make zero profits (perfect competition) 
 
The consumer’s learning procedure can be articulated into three steps. 
STEP 1: State Identification. In our model, the state of consumers has 2 

components, the week type and the observation of the average (flat) price paid 
during the previous correspondent period.6 Actually, we assume the perception 
about flat price to be limited to binary information, i.e. the fact that it has been 
higher or lower than PFW. 

STEP 2: Action Selection. After having identified the current state, each agent 
looks at what his experience suggests to be the best action in this scenario (flat 
rate or time-of-use pricing). More technically, he selects the action with maximum 
Q-value corresponding to current state. To balance the exploration (to explore 
possible better strategies) and exploitation (to exploit the best strategies found by 
past experience), ε-greedy policy (with ε possibility to select randomly instead of 
selecting the best strategies up to now in order to explore possible better strategies) 
is used in the proposed action selection. That is, during the action selection 
process, an agent selects most of the time an action with maximum Q-value in the 
state s. But, with a small probability ε, he chooses randomly, independently from 
the Q-values. In other words, the agent has a relatively small probability to 
explore other choices even if they appear less profitable according to past 
experience. In our model, this probability is equal to 10%. 

STEP 3: Q-table update. At the end of each week, agents have learnt 
something more on their optimal choice. Thus, Q-values are updated, using (1)-(2).
  

In the first situation, we assume the retailers make zero profit, and we focus on 
investigating consumers’ behavior. As it has been stated in Section I, in such a 
situation the flat rate should disappear, in the absence of risk aversion and in a 
world without transaction costs. What will happen if we consider consumers as 
agents in the sense described in previous Sections? Basically, they will make 
sometimes a “wrong” choice due to the imperfect information of their own load 
profiles, although the probability to make “wrong” choice is very low under a 
long time of study because they learn from their past experiences.  

Table 2 shows results of different simulations made to see how different 
parameters in our model may impact on the optimal choices of consumers. In each 
case it is shown how many consumers (over the total of 1000) select flat or TOU 
price option. 

 
 
 

                                                           
6 Note that the weekly average flat rate can not be obtained until all of the consumers have made 
their choices. 



 

13  

Table 2. Simulation results of different cases results under the zero profit assumption of retail side 
 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

No heterogeneity 
in load profile 
without random. 

Heterogeneity 
in load profile 
without random. 

Increased 
heterogeneity in 
load profile 

With random in 
RTP and load 
profile 

With willingness 
to delay 
consumption 

The same as 
case 5 but 
only 4 states 

The same as 
case 4 but only 
4 states 

δPer  = 1.0 
δW    = .0 
δD    = .0 
δPD  = .0 
δPN  = .0 
dWM = .0 

δPer  = 1.0 
δW    = .2 
δD    = .0 
δPD  = .0 
δPN  = .0 
dWM = .0 

δPer  = 1.0 
δW    = .4 
δD    = .0 
δPD  = .0 
δPN  = .0 
dWM = .0 

δPer  = 1.0 
δW    = .2 
δD    = .2 
δPD  = .2 
δPN  = .2 
dWM = .0 

δPer  = 1.0 
δW    = .2 
δD    = .2 
δPD  = .2 
δPN  = .2 
dWM = .2 

δPer  = 1.9 
δW    = .2 
δD    = .2 
δPD  = .2 
δPN  = .2 
dWM = .2 

δPer  = 1.9 
δW    = .2 
δD    = .2 
δPD  = .2 
δPN  = .2 
dWM = .0 

     FL    RTP 
0      0  

      0      0  
      0      0  
      0      0  
      0      0  
      0      0  
      0      0  
      0      0  

       FL    RTP 
   397    427  
   189    392  
   400    430  
    86    224  
   447    442  
   194    408  
   436    458  
   171    378 

     FL    RTP 
    447    478  
    160    626  
    459    452  
    111    543  
    457    463  
    158    634  
    451    461  
    154    619  

       FL    RTP 
   447    434  
   177    410  
   426    399  
    79    246  
   408    402  
   185    428  
   391    408  
   168    389 

     FL    RTP 
37    726  

     0      0  
     4    633  
     0      0  
    45    717  
     0      0  
    32    748  
     0      0  

     FL    RTP 
    38    723  
     0      0  
     5    635  
     0      0  
    46    720  
     0      0  
    29    742  
     0      0  

     FL    RTP 
    210    387  
     0      0  
    95    213  
     0      0  
   214    392  
     0      0  
   194    371  
     0      0  

 
Case 1 just tests that when there is no consumer heterogeneity on load profiles, 

all consumers are indifferent between the two options (in other words, the 
consumers’ probability to select flat or TOU price is the same, 50%). The other 
cases show the results when consumers have different load profiles under 
different assumptions concerning uncertainty, willingness to shift consumption 
across time periods, number of states identified by the consumers. The main 
insights from this analysis may be summarized as follows: 

- Despite TOU selections prevail, a large proportion of consumers would be 
indifferent and several flat rate selections can be observed (at least 20% 
when consumption shifts across time periods is ignored); sometimes 
selections are equally split between the two options (even if this happens 
only when flat rate is observed to be unexpectedly low). The interesting 
thing in this result is that some consumers rationally select the flat option, 
which should instead become sub-optimal for everyone according to theory. 
The reason is that theory would work if all consumers believe that other 
consumers are also rational. Instead, in our model at each time there is a 
little part of consumers being choosing their action randomly, and this 
affects the Q-values; this means that the multi-agent framework can capture 
the idea that, even if an agent behaves rationally, he must consider the 
probability that the others are not doing so. 

- Since we do not model risk aversion, random variations around the average 
does not have substantial effects on the results. Also, the extent to which 
consumer heterogeneity is more severe does not change the simulation 
predictions. In the following Sections, we present simulations where the 
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values of these parameters are the following: δPD = δPN = 0.1 and δW  = δD = 
0.27.  

- When comparing results obtained with reference to different week (and 
therefore different load condition), they are quite similar, but it seems that 
the highest the difference in prices and loads between day and night, the 
highest is the percentage of flat selections. This trend is certainly not so 
evident, however it may be explained by the fact that “making an error” 
selecting TOU prices for consumers with high daily consumption may have 
an higher impact on Q-values when daily prices are higher. 

- As expected, when consumers are able to shift consumption from the more 
expensive to the cheapest period, TOU rates become more appealing and flat 
rate selections decrease below the 5%. 

- Finally, we consider a reduction of the number of states identified by the 
consumers, supposing he does not have (or does not care about) the 
information about the previous flat rate. It seems that if we reduce 2 states to 
1, the lowest percentage will appear in flat rate selection and the highest in 
TOU). Thus, we may conclude that more detailed state definition does not 
help in leading to the theoretical best practice. 

  
4.2 Retailers are agents, while consumers are assumed to just make the best 
choice at each time. 
 
 Similarly, we can define the learning steps of retailers as follows: 

STEP 1: State Identification. In the case of retailers, the state is defined as the 
strategy chosen by the competitor in the previous time period. Note that in this 
second part of simulations we restrict the analysis to 1 typical week only. 

STEP 2: Action Selection. Retailers have to choose the optimal mark-up on 
wholesale cost of electricity. Since the states are just the previous actions of the 
competitor, the optimal action has a nice interpretation in terms of “reaction” to 
his competitor’s behaviour. Considering the different state and the corresponding 
optimal action, this situation reflects the concept of reaction function typically 
used in oligopoly models. 

STEP 3: Q-table update. 
 In this situation we analyze the results when there is not an assumption of 
perfect competition among retailers, but we endogenize the behavior of retailers in 
the model. Therefore we want to investigate the possibility of making profits by 
retailers whose activities are simply selling electricity to the consumers after 
purchasing it from the power exchange. 

                                                           
7  Additional simulations were run considering different values for these parameters, without 
significant effects on the results. 
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Case 1: We have two retailers that compete in the retail market (Bertrand 
model: they compete on prices). The action of retailer 1 (and 2) is choosing the 
optimal markup with reference to the wholesale price, as defined in formula (8). If 
ΔF1 (ΔF2) = 0, it means that the retailer is selling at a price which is approximately 
equal to the average cost of purchasing in the Power Exchange.8 

 
Table 3. Q-tables of retailers and No. of consumers selection in equilibrium under case 1 when only retailers are agents 

 
Q-table of retailer 1 Q-table of retailer 2 

States 

ΔF1 

States 

ΔF2 

-0.2 0 0.1 0.3 0.5 -0.2 0 0.1 0.3 0.5 

-0.2 -10102 395.37 3596.4 1694.4 660.24 -0.2 -9016 256.14 3278.6 1787.7 824.19 

0 -8692 241.87 3313.5 1226.2 293.67 0 -8710 343.51 3189.5 1059.2 324.49 

0.1 -11751 344.94 3367.4 453.1 338.85 0.1 -11759 336.95 3354.4 345.66 331.64 

0.3 -11474 550.1 3170.6 2390.6 670.39 0.3 -10934 548.05 3305.9 2443.9 735.73 

0.5 -8312 493.37 3485.6 1236.8 1301.8 0.5 -10240 359.32 3275 1177.6 896.71 

No.  of consumers  selecting retailer 1 in equilibrium:    
479 

No.  of consumers  selecting retailer 2 in equilibrium:    
521 

 
 Theory predicts that in Bertrand model both retailers make zero profits. 
Actually, in our model we restrict the choice of ΔF1 (ΔF2) to a discrete action set, 
so the best strategies of both retailers should be the lowest possible delta above 0. 
The simulation confirms the expected result, and for both retailers the action [ΔF1 
(ΔF2) = 0.1] results to be the best action in every state. This has a nice 
interpretation in terms of game theory, because the action [ΔF1 (ΔF2) = 0.1] can be 
seen as a dominant strategy for both retailers; the couple [ΔF1= 0.1; ΔF2= 0.1] is 
therefore a Nash Equilibrium in dominant strategies. That bridges an interesting 
parallel between game theory equilibrium and multi-agents equilibrium 
(convergence). 

Case 2: Now, we consider different pricing options for the two retailers. In 
particular, let us assume that retailer 1 offers a TOU rate, with different night and 
day prices, while retailer 2 offers flat rate. The action of retailer 1 is now choosing 
the degree of price differentiation between day and night. In this case, we impose 
the following restriction: ΔN1 = -2*ΔD1 in order to reduce the number of states and 
actions and therefore the computational requirements. We still get a Nash 
equilibrium in dominant strategies [ΔD1= 0.2; ΔF2= 0.1]. In this case, the 
heterogeneity in consumer load profiles becomes relevant. The first retailer, 
choosing his optimal combination between day and night prices, can get more 
profits than the second retailer (who offers flat rate), thought he is actually serving 
                                                           
8  We investigate both the case when the pattern of discrete possible action is symmetric or 
asymmetric among retailers (or firms), and we got the same results. 
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a lower number of consumers (393 vs. 607). Comparing case 2 with case 1 
(comparing the Q-values in these 2 cases), we see that however retailer 1 makes 
more or less the same profits (similar Q-values) as before, while retailer 2 makes 
less profits. Summarizing, it seems that competing on different pricing schemes 
even reduce the profits for retailer instead of producing benefits. 

 
Table 4. Q-tables of retailers and No. of consumers selection in equilibrium under case 2 when only retailers are agents 

 
Q-table of retailer 1 Q-table of retailer 2 

States 

ΔD1 

States 

ΔF2 

-0.1 0 0.1 0.2 0.4 -0.2 0 0.1 0.3 0.5 

-0.2 -4079 248.13 3353 1882.4 299.33 -0.1 -8793 197.53 3379.8 671.41 242.69 

0 -4792 223.12 3636.6 1443.8 1314.9 0 -10194 216.4 3048.4 524.92 256.63 

0.1 -5689 336.69 3408.2 349.49 532.93 0.1 -11760 332.18 3560.4 465.74 338.52 

0.3 -3806 320.13 3257.3 1227.5 373.79 0.2 -11055 350.93 3329.2 830.3 346.65 

0.5 -4804 282.66 3119.8 1125.1 2987.5 0.4 -10153 273.97 3478.7 1596.4 292.67 

No. of consumers selecting retailer 1 in equilibrium:
393 

No. of consumers selecting retailer 2 in equilibrium:   
607 

 
 
Case 3: As in case 3, we consider different pricing options offered by the two 

retailers. However, now retailer 1 can choose separately 2 different deltas, one for 
the day and one for the night price. His action is thus the combination of two 
ΔD1(ΔN1), resulting in many more possibilities.  
 Again, we get a Nash Equilibrium in dominant strategies [ΔD1=0, ΔN1=1.2; 
ΔF2=0.1]. Profit for retailer 2 is very similar to case 2, while retailer 1 can make a 
little higher profit (Q-value=3760 vs. 3000). This is due to the higher flexibility in 
choosing prices; however, this does not change the previous insight that 
competition on different price schedules does not seem to help to make profits. 
Again, retailer 1 makes more profits though retailer 2 has more consumers. 

It is interesting to note that the profits for retailer 1 comes from the high delta 
on night prices (ΔN1=1.2 means that night prices are, in average, 2.2 times the cost 
of purchasing electricity from the EPX during the night). Retailer 1 can get these 
profits and still capture the consumers which have a more night oriented (and thus 
cheaper) load profile. Retailer 2 will instead serve the more daily oriented (and 
more expensive) consumers. 

 
 
 
 
 

 



 

17  

Table 5. Q-tables of retailers and No. of consumers selection in equilibrium under case 3 when only retailers are agents 
 

Q-table of retailer 1 

States 

ΔD1/ΔN1 

-0.2 -0.2 -0.2 -0.2 0.0 0.0 0.0 0.0 

-0.6 0.0 0.6 1.2 -0.6 0.0 0.6 1.2 

-0.2 -7717 -8730 -4396 -2066 -1216 393 2084 3983 

0.0 -8600 -8583 -3359 -1890 -1180 419 1774 3668 

0.1 -13661 -10407 -6976 -3455 -2871 409 3067 3761 

0.3 -13741 -10313 -6831 -3266 -2881 565 2938 4047 

0.5 -8494 -6816 -3517 -1725 -1502 373 835 3996 

 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 

 -0.6 0.0 0.6 1.2 -0.6 0.0 0.6 1.2 

-0.2 3490 3344 2925 2617 2583 804 1960 1113 

0.0 1298 3287 3493 3055 2838 2363 2483 446 

0.1 2867 3016 2254 454 1980 541 496 444 

0.3 2817 2886 2822 2451 3064 2791 3039 643 

0.5 3260 3300 3186 2675 2952 1696 2511 451 

Q-table of retailer 2 

States 

ΔF2  

-0.2 0.0 0.1 0.3 0.5 

-0.2 -0.6 -9921 300 1877 1276 639 

-0.2 0.0 -7178 164 2424 1376 499 

-0.2 0.6 -7497 5 1700 1315 356 

-0.2 1.2 -5508 191 1722 1090 236 

0.0 -0.6 -7378 147 1493 1426 587 

0.0 0.0 -8550 278 1799 1501 1335 

0.0 0.6 -7686 10 1806 1162 216 

0.0 1.2 -11792 161 1564 342 167 

0.2 -0.6 -10994 78 2027 1310 352 

0.2 0.0 -11713 281 1947 1546 389 

0.2 0.6 -11631 337 1921 1515 815 

0.2 1.2 -11702 351 1656 1269 564 

0.4 -0.6 -10918 -191 2222 2122 853 

0.4 0.0 -11263 104 1663 1463 1489 

0.4 0.6 -9817 199 1890 1599 550 

0.4 1.2 -5758 141 1902 1209 661 

No. of consumers selecting retailer 1 in equilibrium:        418 

No. of consumers selecting retailer 2 in equilibrium:        582 
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4.3 Both consumers and retailers are agents. 
 
 This is the natural union between situation A and B, with the difference that 
states for consumers are now represented by the combination of retailers strategies, 
and the action of consumers is choosing among the two retailers. 

The analysis in this situation repeats the one seen above with the only 
difference that now also consumers are included in the multi-agent framework. 
The main goal is to see if in this context retailers can have the possibility to make 
more profits. 

Case 1: Both retailers offer flat rate, and the price schemes are the same. 
 When consumers are agents, we get a fundamentally different result in the 
choice of retailers and consequently in their profits. In fact, the Nash Equilibrium 
now is [ΔF1= 0.3; ΔF2= 0.3], and retailers can make higher profits than Case 1 
when consumers are not agents. This can be interpreted in the sense that retailers 
can exploit the difficulty by the consumers in learning their best actions. When 
both retailers are offering ΔF1(ΔF2) = 0.3, no one will have incentive to lower the 
price, because even if a lower price would be more convenient for all consumers, 
only part of them will be aware of that, or however they will need time to learn it. 

 
Table 6. Q-tables of retailers and No. of consumers selection in equilibrium under case 1 when both retailers and 

consumers are agents 
 

Q-table of retailer 1 Q-table of retailer 2 

States 

ΔF1 

States 

ΔF2 

-0.2 0 0.1 0.3 0.5 -0.2 0 0.1 0.3 0.5 

-0.2 
-

7971.4 985.36 5193.3 9662.9 6531.5 -0.2 
-

9115.6 978.15 5397.6 10077 6052.1 

0 
-

7302.7 1033.8 5748.8 9163.1 5279.5 0 -9100 1066 5971 9645.1 4648.9 

0.1 
-

8187.7 1098.5 5734.7 10127 4914.8 0.1 
-

9066.1 991.18 5650.6 10763 4675.9 

0.3 
-

9825.8 1009.1 6378.5 10188 4577.7 0.3 
-

9863.4 997.53 6156 9631.5 4329.3 

0.5 
-

9112.6 1189 6304.1 9330.9 5559 0.5 
-

9353.8 1100.2 5811.7 9605.3 5143.6 

No. of consumers selecting retailer 1 in equilibrium:
507 No. of consumers selecting retailer 2 in equilibrium:        493

 
Case 2:  Retailer 1 offers time of use (TOU) rates (with  ΔN1 = 2*ΔD1) and 

retailer 2 offers flat rate. 
We get a Nash Equilibrium at [ΔD1= 0.4; ΔF2= 0.3], with substantial profits for 
both retailers, but lower than in case 1. As in the case without consumers as 
agents, here retailer 1 (choosing TOU pricing) can get higher profits than Retailer 
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2 (flat rate); in this case the number of consumer is more or less equally split 
between the retailers. 
 

Table 7. Q-tables of retailers and No. of consumers selection in equilibrium under case 2 when both retailers and 
consumers are agents 

 
Q-table of retailer 1 Q-table of retailer 2 

 
States 

ΔD1  
States 

ΔF2 

-0.1 0 0.1 0.2 0.4 -0.2 0 0.1 0.3 0.5 

-0.2 -6865.9 820.14 4628.3 7766.9 7617.3 -0.1 -10133 555.46 3613.6 7270.6 4531.4 

0 -6890.3 830.27 4508.7 7271.7 8441.4 0 -10163 437.14 4071.2 7471.9 4657.6 

0.1 -6780.6 844.07 4640 7359.9 8938.4 0.1 -10218 508.33 4226.3 7256.1 4520.3 

0.3 -6847.4 860.03 4497.2 7398.1 8694.2 0.2 -10358 87.381 3652.2 4115.9 4618.8 

0.5 -6513.3 1006.2 4442.4 7509 9007.3 0.4 -10202 357.89 4434.1 7071 4812.9 

No. of consumers selecting retailer 1 in equilibrium:        533 No. of consumers selecting retailer 2 in equilibrium:      466 

 
 
 Note that, with respect to the case without consumers as agents, we have 
retailer 1 and retailer 2 choosing a higher delta (maximum price differentiation 
between day and night for retailer 1; ΔD1= 0.3 with respect to 0.1 for retailer 2). 
This allows gaining more profits: again, consumers need time to learn their best 
actions and thus give more opportunities of profits to the retailers. 

Case 3:  Retailer 1 offers time of use (TOU) rate (with 2 deltas), and retailer 2 
offers flat rate. 
 With respect to case 2, the higher flexibility in the pricing choice of Retailer 1 
allows him to increase his profit. Also Retailer 2 appears to benefit from the 
change in strategies by Retailer 1. Note that however, comparing the profits with 
the Case 1, they appear to be lower: this confirms the impressions that retailers 
can not gain from competing on different price schedules. 
 Note that in this case, even if we still have a Nash Equilibrium [ΔD1= 0.2, 
ΔN1=1.2; ΔF2=0.3], now the equilibrium is not in dominant strategies. In particular, 
the best strategy of Retailer 1 depends on the State (and therefore, it depends on 
the action chosen by retailer 2). This means that the results we get produce a Nash 
Equilibrium, but the concept is "weaker" than the case of Nash Equilibrium in 
dominant strategies, because the equilibrium will be achieved conditional to the 
hypothesis of rational expectation (Retailer 1 must believe that Retailer 2 will act 
in a rational way, choosing ΔF2= 0.3).  
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Table 8. Q-tables of retailers and No. of consumers selection in equilibrium under case 3 when both retailers and 
consumers are agents 

 
Q-table of retailer 1 

States 

ΔD1/ΔN1 
-0.2 -0.2 -0.2 -0.2 0.0 0.0 0.0 0.0 
-0.6 0.0 0.6 1.2 -0.6 0.0 0.6 1.2 

-0.2 -7767 -5159 -2944 -1330 -1124 755 1604 4011 
0.0 -5475 -4925 -2170 -1230 -1412 879 2124 3692 
0.1 -7761 -5035 -3337 -1169 -1343 958 3002 5103 
0.3 -11580 -8607 -5238 -2395 -2162 923 4063 7073 
0.5 -9126 -7156 -4319 -1665 -1561 1218 3560 6662 

         
 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 
 -0.6 0.0 0.6 1.2 -0.6 0.0 0.6 1.2 

-0.2 5584 5062 4972 7167 7161 8888 7083 6474 
0.0 4188 5977 6742 10553 6641 6546 7675 5603 
0.1 5645 5826 7061 6351 8460 6901 6252 6039 
0.3 6504 7799 7612 10027 7035 7559 7139 3943 
0.5 6553 8016 8208 9407 8045 8179 8061 7134 

         
         

Q-table of retailer 2 

States 
ΔF2  

-0.2 0.0 0.1 0.3 0.5 
-0.2 -0.6 -6680 613 3744 7438 5633 
-0.2 0.0 -5936 433 3558 7042 5519 
-0.2 0.6 -5267 667 2870 7571 6376 
-0.2 1.2 -5108 585 3182 7483 4754 
0.0 -0.6 -5615 728 3843 7061 3867 
0.0 0.0 -5615 534 3858 7148 4134 
0.0 0.6 -5419 654 3272 7295 4950 
0.0 1.2 -5943 745 3822 7497 5171 
0.2 -0.6 -6155 901 4381 6874 5688 
0.2 0.0 -8742 423 5610 4223 3914 
0.2 0.6 -10252 617 4964 4735 3902 
0.2 1.2 -9706 725 6078 7939 4255 
0.4 -0.6 -9988 624 5050 7904 4523 
0.4 0.0 -9582 678 5250 8320 5276 
0.4 0.6 -8627 713 4889 7645 6000 
0.4 1.2 -7915 1083 5296 7111 5363 

No. of consumers selecting retailer 1 in equilibrium:         508 
No. of consumers selecting retailer 2 in equilibrium:        488 
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5. CONCLUSIONS 
 

This paper proposes a multi-agent framework to model a liberalized retail 
electricity market. We run simulations on both consumers and retailers behavior 
to study the impact of having consumers with heterogeneous load profiles on their 
choices among alternative pricing structures and on retailers’ strategies. The 
results highlight some possible departures from the theoretical predictions. 

When we assume perfect competition among retailers and consumers only 
learn their best pricing option from the experience on previous bills, flat price will 
still be a rational choice for consumers with more peaky load profiles. In theory, 
flat rate should disappear in a world without transaction costs and without risk 
aversion; however, this would not be the case in our multi-agent system. This is 
because our framework allows to capture the idea that, even if an agent behaves 
rationally, he must consider the probability that the others are not doing so. 

When it comes to the retailer behavior, the multi-agent system converges to Q-
values which can be interpreted as a game theoretical structure reflecting the basic 
Bertrand model assumptions. When customers behavior is ignored, the Nash 
equilibrium is consistent with the Bertrand predictions. Furthermore, the 
differentiation about pricing schemes among retailers does not lead to an increase 
in profits; stated better, competitive screening on a load profile basis does not help 
in making more profits. However, when also consumer behavior is included in our 
multi-agent system, the results highlight a departure from the Bertrand prediction 
of zero profits. In a world where consumers can make short term errors (and can 
learn from them), retailers are able to charge higher prices and make substantial 
profits. It is interesting to note that, even in our simplified model with 
assumptions coherent with the perfect competition model, the retail market does 
not lead to the perfect competition outcome because of the unique hypothesis that 
consumers may not be able to select the best retailer at any time, even if he is 
actually rational.  

Overall, the simulations in our paper suggest that in a liberalized retail market 
retailers may be able to charge substantial markups to consumers. The retailers 
may not have the interest in introducing time-varying tariff structure, unless other 
competitors do. Thus, some form of regulation may be needed to enhance 
competition and the possibility of choice for consumers, especially at the first 
stage of the liberalization. 

The issue of retail competition and consumer heterogeneity remains a 
promising area for further research, which should include for example the joint 
modeling of different customer dimensions and different market segments (such 
as residential, industrial and commercial users). This can spread light also on the 
relevance of consumers’ aggregation policies.  
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6. APPENDIX: NOTATIONS OF FORMULAS 
 
 

δW: Weekly load random factor. When δW is 0, it means that the weekly load 
profile is the same every week. 
eW: Weekly load random term. eW obeys a uniform distribution U(-δW ·LDW, 
δW ·LDW ). 
δD: Daily load random factor. When δD is 0, it means the everyday load 
profile is the same during one week. 
eD: Daily load random term. eD obeys a uniform distribution U(-δD ·LiDW, 
δD · LiDW ). 
δPD: Day price random factor. When isδPD  0, it means that the day price is 
strictly proportional to daily load and no random factor is introduced. 
ePD: Day price random term. ePD obeys a uniform distribution U(-δPD ·PDW, 
δPD · PDW ). 
δPN: Night price random factor. When is δPN  0, it means that the night price is 

strictly proportional to night load and no random factor is introduced. 
ePN: Night price random term. ePN  obeys a uniform distribution U(-δPN ·PNW, 

δPN · PNW ). 
δPer: This parameter is for state identification. It means the times of average flat 

rate. When δPer is 1.0, it means that the consumer state is divided into 1) 
his flat rate is lower than the average system flat rate, and 2) his flat rate is 
equal or higher than the average system flat rate. When  δPer is 1.9, it 
means that the consumer state is divided into 1) his flat rate is lower than 
1.9 times of the average system flat rate, and 2) his flat rate is equal or 
higher than 1.9 times of the average system flat rate. 

dWM: The maximum percentage of the daily load the customer may be willing to 
shift in order to save money. 
LD: System everyday load during the day. 
LN: System everyday load during the night. 
LiD: Individual load of consumer ith during the day. 
LiN: Individual load of consumer ith during the night. 
LDW: A 1000·1 vector denoting the 1000 consumers’ individual average weekly 
daily load profile. 
PD: System everyday price during the day. 
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PN: System everyday price during the night. 
PF: Every day weighted average between day and night price (every day flat 

rate when all consumers are under flat rate and there is perfect competition 
in the retail market). 

PF-ret1: Flat price offered by retailer 1. 
PF-ret2: Flat price offered by retailer 2. 
PD_ret1: Day price offered by retailer 1 (TOU pricing). 
PN_ret1: Night price offered by retailer 1 (TOU pricing). 
Rcon: A 1000·1 vector denoting the 1000 consumers’ reward. 
Rret1 : The reward of retailer1. 
Rret2 : The reward of retailer2. 
ΔF1: % make up of retailer 1 over the average weekly cost of buying electricity 
from the EPX. 
ΔF2: % make up of retailer 2 over the average weekly cost of buying electricity 
from the EPX. 
ΔD1: % make up of retailer 1 over the average weekly cost of buying electricity 
from the EPX during the day. 
ΔN1: % make up of retailer 1 over the average weekly cost of buying electricity 
from the EPX during the night. 
*W: Weekly average of everyday values taken by *. 
For example: 
PDW: System weekly average price during the day. 
PNW: System weekly average price during the night 
PFW: System weekly average flat rate. 
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