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Abstract- Competition has been introduced in the electricity 
markets with the goal of reducing prices and improving 
efficiency. The basic idea which stays behind this choice is 
that, in competitive markets, a greater quantity of the good 
is exchanged at a lower and a lower price, leading to higher 
market efficiency.  

Electricity markets are pretty different from other 
commodities mainly due to the physical constraints related 
to the network structure that may impact the market 
performance. The network structure of the system on which 
the economic transactions need to be undertaken poses 
strict physical and operational constraints.  

Strategic interactions among producers that game the 
market with the objective of maximizing their producer 
surplus must be taken into account when modeling 
competitive electricity markets. The physical constraints, 
specific of the electricity markets, provide additional 
opportunity of gaming to the market players. Game theory 
provides a tool to model such a context. This paper 
discussed the application of game theory to physical 
constrained electricity markets with the goal of providing 
tools for assessing the market performance and pinpointing 
the critical network constraints that may impact the market 
efficiency. The basic models of game theory specifically 
designed to represent the electricity markets will be 
presented. IEEE30 bus test system of the constrained 
electricity market will be discussed to show the network 
impacts on the market performances in presence of 
strategic bidding behavior of the producers.     
 
Index terms: Electricity markets, Game theory, Physical 
constrained economic systems 

I. INTRODUCTION 

Nowadays the liberalization of the power industry has 
been implemented in many countries. The introduction of 
the deregulation has not always proved to be as efficient 
as expected. In California [1, 2], the market experienced 
huge problems. From May 2000 to May 2001, the price 
hit frequently the cap and forced the regulator to revise 
the price cap downward. The average price of December 
2000 was 317 $/MWh, almost ten times higher than usual. 
In June 1998, wholesale electricity price in Midwest US 
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market reached 7,000 $/MWh [3]. Starting from the 
regulated monopoly, the competition in the electricity 
markets was aimed to improve market efficiency toward 
the theoretical reference model of perfect competition. 
Actually, due to the structural characteristics, the 
electricity markets are oligopoly in which the market 
performances are in-between perfect competition and 
monopoly. In this context, the task of the regulators is to 
force them toward perfect competition while monitoring 
continuously the distance from such a condition, or to 
avoid market power exploitation. 

In the electricity markets, as well as in other markets, 
market power may arise striving for larger amount of 
profits or surpluses with high prices and capacity 
withdrawals, compared with the competitive values [4]. 
Game theory [5-6] can capture the strategic interactions 
among producers who are aware that their results depend 
on other competitors’ decisions. Based on the game 
theory, [10-22] investigated the strategic interactions 
among producers in electricity markets.  

In addition to the traditional causes of market power, 
in the electricity markets, the network constraints may 
give additional possibilities of market power behaviors 
arising that are very specific of this contest. An 
instantaneous balance between power injected by the 
generators and the power withdrawn by loads plus the 
transmission losses should be guaranteed to keep the 
system frequency at the rated value. The Kirchhoff laws 
must be satisfied and a power balance at each bus must 
be enforced. The power flow paths, directions and values, 
are depended on the bus voltage profile and primary 
constants of the transmission lines and those lines have 
flow limits including thermal, voltage drop and stability 
limits. In addition, from the operational point of view, the 
voltage profile of the system must be kept within a 
specific interval. Therefore, the power systems that 
accommodate the economic transactions in the market 
need to be operated under strict physical and operational 
constraints to assure its feasibility; if these constraints are 
binding the system is said to be congested and proper 
measures need to be undertaken [7]. This paper is aimed 
to discuses the network constraints impacts on the market 
performances under oligopoly models.  

This paper consists of four additional sections. In 
section II, the market clearing model under network 
constraints is introduced. Section III discusses different 
game models while in section IV the numerical studies 
with respect to IEEE30 bus system is presented .Section 
V provides some conclusive remarks. 
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II MARKET CLEARING MODEL 

In the pool operated electricity markets, the 
Independent System Operator (ISO) takes the 
responsibility of coordinating the aggregate offers from 
the supply side and the aggregate demand curves for a 
specified time interval trading, usually one hour. That 
leads to the determination of market equilibrium, 
characterized by a unique market clearing price (λ) and a 
market clearing quantity (q) (Fig.1 left). The social 
surplus is composed by the consumer surplus (SC ) and 
producer surplus (SG ). However, due to the peculiarities 
of the electricity transmission, the transactions must be 
settled according to the physical constraints of the 
electricity network and different nodal prices may arise 
when the flow limits are binding (λ′′ and λ′ are 
respectively for the demand side and supply side, Fig.1 
right). In this case, merchandise surplus (SM ) will arise, 
the area λ′′EAλ′(Fig.1 right). The social surplus is equal 
to the summation of the consumer surplus, merchandise 
surplus and producer surplus.  

 

 
 

A producer that is unable to exercise market power is 
known as price taker. According to the classic economic 
theory, a price-taking producer that wishes to maximize 
his profits would bid his power production at his own 
marginal cost and the market is characterized as perfect 
competition [8-9].  

In perfect competition markets a large number of 
price-taking producers with a very small market share 
produce homogeneous and perfectly substitutable 
commodities. Furthermore the market should not have 
significant entry barriers but have free mobility of all the 
related production resources and perfect information 
among producers. Although the perfect competition is 
completely unrealistic, it can serve as a reference case to 
identify market power behaviors in a practical market, 
basing on the fact of that perfect competition would lead 
to the most efficient market performance.  

Network constraints distinguish the electricity 
markets from most of other commodity markets. 
Considering the network constraints, the perfect 
competition market equilibrium can be interpreted as an 
optimization problem. Let’s assume that at each 
generator bus there is just one producer (generator), the 
cost function of the producer g is: 
 
Cg (pg) = ag

m pg + ½ bg
m pg

2    ∀g ∈G      (1) 
 
and the marginal cost of the producer g is:  

 
cg (pg) = ag

m + bg
m pg            ∀g ∈G    (2) 

 
where ag

m and the bg
m are respectively the 

intercept($/MW)and slope($/MW2) of the marginal cost 
function; pg is the production quantity (MW); G is the set 
of  generator buses.  

At the load bus d, the electricity consumer d is 
modeled with a linear demand function: 
 
vd = ed + hd qd                          ∀d∈D     (3) 
 
where ed and the hd are respectively the intercept ($/MW) 
and slope (negative, $/MW2) of the demand function; qd  
is the demand quantity of the load d (MW);  D is the set 
of  load buses.  

The market clearing based on the linear DC power 
flow can be formulated as: 
 
max     SS = ½ qT H q + qT e – ( ½ pT Bm  p + pT am)       (4) 
 
s.t.                       IG 

T p – ID 
T q = 0         ↔ vN                 (5) 

 
                          – T ≤ J( p – q )≤ T       ↔ µ+/ µ–          (6) 
 
                           P min ≤ p ≤P max            ↔ ω+/ ω –        (7) 
where: 
p :    power production vector 
q :    power demand vector 
e,h:  intercept and slope parameter vectors for 
 linear demand curves 
am,bm: intercept  and   slope  parameter  vectors  for
 linear marginal costs 
H,Bm:   diagonal matrix (diagonal elements: the 

vector h or bm , respectively ) 
P min, P max: vectors of lower, upper capacity (MW) for 

the generators  
J:  power transfer distribution matrix  
T:     the flow limits (MW) vector 
IG, ID :  identity vector (same dimension as the 

power or demand vector 
The superscript “T” is used to denote the transpose 
operation for the matrices or vectors. 

The equality expression (5) is for the power balance, 
the associated Lagrange multiplier νN is the nodal price at 
the reference bus N.The inequality expressions (6) and 
(7) represent the line flow limits and the power 
generation lower and upper limits; µ+/ µ– and ω+/ ω–   are 
the associated Lagrange multiplier vectors for the line 
flow limits and for the generation limits.  

 The nodal prices (λ) at the buses other than the 
reference bus N can be expressed as linear functions in 
terms of the vN and µ+/ µ– :    
λ = f (vN (p, q), µ+, µ–)    (8) 
When the line flow are not binding, µ+ = µ – = 0 
λ = vN (p, q)  (9) 

all the nodal prices are equal to the reference bus price.  
The power production p and the load demanded q are: 

 
p = (Bm)–1[λG – (ω+ –ω–) – am]  (10) 
 
q = H–1(λD – e)  (11) 
 

Aggregate 
 demand  

Price  Aggregate supply  
function  

(marginal costs) 

0                  q        quantity  

E 
λ 

Fig.1. the market clearing without (left) 
and with (right) network constraints 
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When the production are not binding at the capacity 
limits (ω+ = ω– ＝ 0), the nodal prices of the generators 
are at their supply curves (marginal cost curves under 
perfect competition). As for the loads, the nodal prices 
are at the demand curves. Provided with the nodal prices 
and the power quantities, the producer surplus (Sg

G ) and 
the consumer surplus (Sg

C) can be expressed as: 
 
Sg

G = λg pg – (ag
m pg + ½ bg

m
 pg

2)   ∀g∈G       (12) 
 
Sd 

C = ed qd + ½ hd qd 
2 – λd  qd         ∀d∈D       (13)  

However, the perfect competition is just an ideal 
market that serves as reference case. The electricity 
market is closer to the oligopoly model in which the 
producers may exert market power behaviours in 
presence of strategic biddings to maximize their producer 
surpluses. Modelling the oligopoly market clearing is 
done by substituting the marginal cost curves in the 
objective function of the perfect competition model (4) 
with the strategic biddings of the producers and the 
object function value is called system surplus. 

III. OLIGOPOLY COMPETITION MODELS: GAME THEORY 

APPLICATIONS 

Game theory was founded in 1944 by Von Neumann 
and Morgenstern. The papers written by Nash in 1951 on 
the definition and existence of Equilibrium are the basis 
for modern non cooperative game theory. In the last 50 
years game theory has become a crucial tool for the 
analysis of strategic behaviors of individuals and 
competition among companies in oligopoly markets. For 
electricity markets, basic game “ingredients” are: 
Game:   is a set of rules that discipline the interactions 

among competitors; 
Payoff:  for producer g is the producer surplus Sg

G ; 
Strategy: for producer g is the way he chooses the offers 

that may bring the maximal payoff in the 
market clearing; 

Move:  for producer g is the solution of the payoff 
maximization problem taking into account the 
market clearing with the strategies of other 
producers fixed; 

Nash Equilibrium:  
 a situation in which no producer can improve 

his surplus by changing his strategy while the 
strategies of other producers are fixed.  

Let sg be the strategy of producer g, Gg be the set of 
the producers except g (g ∪ Gg = G ), sGg =  
{si, ∀i∈ Gg }: the strategy set of the competitors, ∏g (sg , 
sGg ) the payoff of g given the decisions of the 
competitors.  Then, {sg

*, ∀g} is Nash Equilibrium if:   
 
∏ g (sg

* ,  sGg
* ) ≥∏ g (sg , sGg

* )        ∀g∈G        (14) 
 

In general, equilibrium can be attained by multi 
moves(iteration search algorithm,[4][10],[14]) of the 
game model in which each producer solve his surplus 
maximization problem alternatively until no producer can 
improve his/her surplus by changing his strategy, given 

that the strategies of other producers are fixed. 

A. Supply function equilibrium (SFE) [4] [10-13] 
 

In the SFE game models, each producer will find a 
linear optimal supply function to submit to the market to 
maximize the individual producer surplus. According to 
the parameterization techniques for the decision 
variables, three kinds of supply function models are used 
popularly in literature, which are listed as follows:  
− SFE-intercept: the decision  variable is ag  while the  
 bg  is fixed as bg

m  (sg  = ag ) 
     The supply function can be expressed as: 

   
      og(pg) = ag+ bg

m
 pg                       ∀g∈G     (15) 

 
− SFE -slope: the decision variable is bg while the ag is  
 fixed as ag

m (sg  = bg ) 
      The supply function can be expressed as: 

     
      og (pg) = ag

m+ bg pg                ∀g∈G      (16) 
 

− SFE-k parameter: the decision variable is kg and  
servers as a multiplier of the marginal cost (sg  = kg ) 

     The supply function can be expressed as: 
     
      og(pg) = kg (ag

m+ bg
m pg)       ∀g∈G    (17) 

 
Suppose the strategic supply functions take the 

intercept parameterization model. By applying the KKT 
conditions to the optimization problem (4) ~ (7), we can 
get the price of the reference bus N as: 
 

vN  = −
−

+−+− −+−+

DDGG

GG

IHIIBI

aωωµµJBI
m

m

1-1-

-1

)(

])()([)(
TT

TT
 

       
DDGG

DD

IHIIBI

eµµJHI
m 1-1-

-1

)(

])([
TT

TT

−

+− −+
  (18) 

 
The nodal prices at the generator and load buses are: 
 
λG = vN IG  – JG

T (µ+ –µ– )          (19) 
 
λD = vN ID  – JD

T (µ+ –µ– ) (20) 
 

The subscript of the J matrix is to denote the 
corresponding rows of the J matrix (reduced J matrix). 
For example, JG and JD denote the rows of the J matrix 
corresponding to the generator buses and load buses, 
respectively. 

The power production and the load demanded 
quantities are: 
 
p = (Bm)–1[vN IG – JG

T (µ+ –µ–) – (ω+ –ω–) – a] (21) 
 
q = H –1[vN ID – JD 

T (µ+ –µ–) – e] (22) 

 
With the nodal price and quantity, the maximization 

of the producer surplus can be formulated as: 
 
max      Sg

G                      ∀g∈G   (23) 
 
– T ≤J( p – q )≤ T       (24) 
 
Pmin ≤ p ≤ Pmax   (25) 
 
<µ+

  ,  J( p – q ) – T > =0  (26) 
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<µ–
,  J( p – q ) + T > =0       (27)                      

 
<ω+ , p – Pmax > = 0                 (28)           
 
<ω–

 , – p + Pmin > = 0                    (29)       
 
 µ ≥0, ω≥0;            (30) 
 
where the symbol “< >” denotes the element by element 
production of the two related vectors. 
  
B. Quantity bidding equilibrium 
 

This kind of game models includes the Cournot [14-
18] and Stackelberg models [19-20]. The producers will 
find the optimal quantity to submit to the market.  

Stackelberg model considers leader producers who 
own large shares of the system capacity and are able to 
influence the market prices while the followers do not but 
can observe the quantity chosen by the leaders and select 
their optimal biddings. This model can be defined by a 
backward induction in which the leader producer would 
offer his quantities first and the followers take that as 
given. The response of the followers can be anticipated 
by the leaders and on that basis the leaders would decide 
the quantity offered. 

In this paper, we discuss the Cournot model. 
The Cournot model is used to analyze oligopoly 

markets in which the number of firms is small, or the 
marginal cost curve is ‘steep’ with respect to the demand 
and the size of the firms are relative similar. The decision 
variable is the quantity offered by each producer (sg = pg). 
For the maximization problem of producer g, the power 
quantities offered by other producers are assumed as 
given values. The nodal price at the generator bus g is: 
λg = vN – Jg

T (µ+ –µ– )                 ∀g∈G   (31) 
 

and 
DD

DD
G

IHI

eµµJHI

1-

-1 ])([

T

TT

i
ig

N
g

Pp

v

+−+′+

=

−+

∈
∑

 (32)
  

where the Pi′ (∀i∈ Gg )is the biding quantity of the 
competitors that are considered as given values derived 
from the last moves of corresponding producers. 

The optimization problem can be expressed as: 
 
max     Sg

G                   ∀g∈G   (33) 
 
 – T ≤J (p – q) ≤ T       (34) 
 
Pg

min ≤ pg ≤ Pg
max     (35) 

 
<µ+  ,  J( p – q ) – T > =0  (36) 
 
<µ – ,    J( p – q ) + T > =0       (37) 
  
C. Price bidding equilibrium 
 

This kind of game models includes the Bertrand [21] 
and Forchheimer [22]. The two models respectively 
correspond to the Cournot and Stackelberg models; the 
only difference is that in the former two models the 
producers compete for the price while in the latter two 
the producers compete for the quantity. As we discussed 
before, under no network constraints, market clearing 
price is determined by the aggregate demands. Thus, 

since the producer will not accept negative surpluses, the 
price bids game among the producers will compel the 
producer’s bid down to the marginal cost otherwise it 
will be substituted by other competitors who can provide 
lower prices, given the condition of the unlimited 
capacity of the producers (That is supported by the 
assumption that any firm can capture the entire market by 
pricing below others and can expand output to meet such 
demand [9]). If we consider the network constraints and 
the capacity limits, the price bidding game models are 
impossible to be formulated in a mathematical way since 
prices are actually the byproducts of the market clearing, 
(8), and can not be determined by the producers ex ante. 

Therefore, at least for the short-term such as the 
hourly dispatch game with the consideration of the 
network constraints, the price bidding models are not 
suitable for the electricity markets from the analytical 
point of view. 

IV NUMERICAL STUDIES 

As a matter of fact, the solution of the Nash 
equilibrium in terms of the producers’ strategy is not easy 
due to the fact of that the sub-problem of the 
maximization producer surplus is a nonlinear 
optimization problem.  

First, for the Cournot model, since the production of 
other players are fixed values, the optimization problem 
of the considered player is solved by sweeping all the 
possible states of the lines (3 lines, 33 =27 states), which 
makes the non-linear constraints, the complimentary 
equality constraints of the line flow limits (expressions 
(36) and (37)), transformed into linear constraints due to 
the fact of that the line flow states are pre-specified. The 
complimentary term means that, for each line l, either the 
langrage multiplier µl

+ and µl
−   are equal to zero with the 

line flow not binding or the µl
+ (µl

− = 0) is a positive 
value with the line flow binding at its limit, positive 
direction, or the µl

− (µl
+= 0) is a positive value with the 

line flow binding at its limit, negative direction.   
Second ,for the SFE-intercept model, the sweeping of 

the line flow states is not efficient since the production of 
other players are not determined(only the supply 
functions of the competitors are assumed as fixed in the 
move of the considered player). The complementary 
equality constraints in terms of the production limits (6 
players, the production may be binding at the upper limit 
or lower limit or not binding, expressions (28) and (29)) 
and lines flows limits make the possible states of the 
model solution equal to 36*33, which is a too large 
number to be solved by sweeping all the states space. In 
this respect, for the move of the considered player, we 
first find a good start point by using the heuristic 
optimization approach and from that start point we use 
the analytical approach to find the local optima around 
that point.  

Since the nodal prices may be different when the line 
flows are binding, the weighted average price is 
introduced to represent the market clearing price. The 
market clearing price under constrained network can be 
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expressed as: 
 
λ  = (Σg  pg λg + Σd qd λd) / (Σg  pg+Σd  qd)      (38) 
 

We want to point out the impacts of the physical 
network constraints on the market performances under 
strategic biddings of the producers through the market 
inefficiency index, the Lerner index and the allocation of 
surpluses among market participants.  

Use the superscript E and P to denote the market 
results at the oligopoly equilibrium and perfect 
competition equilibrium, respectively. Use the subscript 
u to denote the market results under unconstrained 
network. For example: 
− Su

SE/Su
SP: Social surplus at oligopoly 

equilibrium/perfect competition equilibrium, without  
network constraints;  

− SSE / λE:  Social surplus/market clearing price at 
oligopoly equilibrium, with network constraints; 

− λuE / λu
P : market clearing price at oligopoly 

equilibrium/perfect competition equilibrium,  
without network constraints  

The market inefficiency indices can be expressed as:  
 
ξ   = 100*( SSE – Su

SP ) / Su
SP              (39) 

 
ξu

   = 100*( Su
SE – Su

SP ) / Su
SP   (40) 

 
The Lerner indices are: 
 
σ = ( λ E – λu 

P  )/ λE (41) 

 
σu = ( λu

E – λu 
P )/ λu

E (42) 
 

The IEEE30 bus test system is composed with 6 
producers (at the 6 generator buses) and 20 consumers (at 
the 20 load buses), Fig. 2. The lines selected to consider 
the network constraints are shown in table I, other lines 
are assumed to have infinitive line flow limits. The 
parameters of the generators and the load demand curves 
are illustrated with the table II and III.  

Perfect competition and monopoly represent the two 
extreme market structures, the market clearing results are 
illustrated with table IV and V. While in other models we 
assume that each generator is owned by one owner, in the 
monopoly case, the six generators are assumed as owned 
by one firm aiming at maximizing its total producer 
surplus, deteriorating the market performance notably 
with very high values of σ (0.94), σu (0.89), ξ (-21.4%) 
and ξu

   (-20%).  
A more common case is the oligopoly of which the 

equilibrium is in-between the two preceding cases. The 
Cournot and the SFE-intercept game models are selected 
to show the oligopoly market performances under 
constrained and unconstrained network, the market 
clearing results at the oligopoly equilibrium are shown in 
table VI and VII. The Cournot model has higher values 
of the Lerner index and higher values of the inefficiency 
index (absolute value) than the SFE-intercept model does, 
both under constrained and unconstrained network, Fig. 3 
and 4, suggesting the Cournot model possesses higher 
noncompetitive level than the SFE-intercept does. On the 
other hand, under the given model, with higher Lerner 
and inefficiency (absolute value) indices values, the 

constrained network brings higher level of market power 
than the unconstrained network does. 

 Fig. 5 is the producer surplus for Cournot model. 
The amount of extra surplus due to the network 
constraints (the total producer surplus under constrained 
network minus the total producer surplus under 
unconstrained network, 3928$–3395 $=533 $) goes to the 
producer G22, G23 and G27, especially the producer G23 
takes the larger part. For SFE-intercept model, Fig. 6, 
only producer G1 gets fewer surpluses under constrained 
network. Furthermore, Counot model contributes to 
higher total producer surplus, and also higher individual 
producer surplus, than SFE-intercept model does both 
under constrained network, 3928$ and 2725$ 
respectively, and under unconstrained network, 3395$ 
and 1835$ respectively.  

Unfortunately, the favorable impacts of network 
constraints on the supply side are along with the adverse 
impacts on the consumer side. The total consumer 
surplus is decreased from unconstrained network case to 
constrained network case, Fig.7, the decrement levels are 
respectively 14% and 18.2% under Cournot and SFE-
intercept game models. 

Furthermore, under constrained network, although the 
market inefficiency indices of   Cournot model and SFE-
intercept model are almost the same, -6.8% and -6.4% 
respectively, it cannot say the two models have the same 
oligopoly level. Indeed, the main effects of the market 
power behaviors from the supply side are more 
remarkable under Cournot model with higher market 
clearing price, 43.8$/MW (38.5$/MW under SFE- 
intercept model), and lower exchanged power quantities, 
226MW (246MW under SFE-intercept model). The less 
total producer surplus ( ∑gSg

G ) with the more total 
consumer surplus( ∑dSd

C  ) and mechanize surplus 
( SM )under SFE-intercept game model than under 
Cournot model, table VII , results in the two models 
close values of the social surplus( SS )and thus the close 
values of the inefficiency indices. 

Another point is that, under constrained network, the 
social surplus at the perfect competition equilibrium 
(10990 $, the last row of the table V) is even smaller than 
the social surplus value at the Cournot equilibrium under 
unconstrained network (11173$, the row 2 of the table 
VI). Therefore, to strengthen the electricity network 
letting it not to be congested is an imperative task that the 
market regulator should monitor continually, from the 
market efficiency point of view. 

 

 Fig.2. The IEEE30-bus transmission network
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Table.I 

THE CONSIDERED LINES FOR THE CONSTRAINED NETWORK  

Lines  l From bus To bus Flow limits 
Tl   MW 

7 4 6 5 
25 10 20 5 
33 24 25 5 

 
Table II 

PARAMETERS FOR THE PRODUCERS 

Bus g ag
m $/MW  bg

m  $/MW2 Pg
min MW Pg

max MW 
1 25 0.15 5 80 
2 20 0.25 5 60 
13 23 0.2 5 60 
22 22 0.25 5 60 
23 20 0.2 5 80 
27 22 0.15 5 70 

    
Table III 

PARAMETERS FOR THE LOAD DEMAND CURVES   

Bus d ed  
$/MW  

fd   
$/MW2 bus d ed  

$/MW  
fd  

$/MW2 
2 125 -5 17 100 -4.5 
3 80 -4 18 80 -4 
4 100 -4 19 100 -5 
7 150 -5 20 100 -5 
8 120 -4.5 21 75 -3.5 
10 100 -4 23 70 -3 
12 120 -5 24 80 -4.5 
14 80 -3.5 26 80 -4 
15 80 -3 29 75 -4 
16 80 -4 30 100 -5 

 
Table.IV 

THE MARKET EQUILIBRIUM UNDER MONOPOLY (MONO.) AND 
PERFECT COMPETITION (PERF.), UNCONSTRAINED NETWORK 

 SS  $ λ   $/MW ∑gPg MW ∑gSg
G $ ∑dSd

C $ SM $ 
Mono. 9120 59.8 158 5601 3519 0 
Perf. 11351 31.6 295 1439 9912 0 

 
Table.V 

THE MARKET EQUILIBRIUM UNDER MONOPOLY (MONO.) AND 
PERFECT COMPETITION (PERF.), CONSTRAINED NETWORK 

 SS  $ λ   $/MW ∑gPg MW ∑gSg
G $ ∑dSd

C $ SM $ 
Mono. 8924 61.3 152 5506 3321 97 
Perf. 10990 32. 6 280 1465 9247 279 

 
Table VI 

THE MARKET EQUILIBRIUM UNDER COURNOT (COUT.)AND SFE-
INTERCEPT (SFE) MODELS, UNCONSTRAINED NETWORK 

 SS  $ λ   $/MW ∑gPg MW ∑gSg
G $ ∑dSd

C $ SM $ 
Cout. 11173 39.4 258 3395 7778 0 
SFE 11345 33 288 1835 9509 0 

 
Table VII 

THE MARKET EQUILIBRIUM UNDER COURNOT (COUT.)AND SFE-
INTERCEPT (SFE) MODELS, CONSTRAINED NETWORK 

 SS  $ λ   $/MW ∑gPg MW ∑gSg
G $ ∑dSd

C $ SM $ 
Cout. 10581 43.8 226 3928 6380 273 
SFE 10618 38.5 246 2725 7416 477 
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V. CONCLUSIONS 

For the specific features of the electricity industry, the 
present electricity markets may be better described in 
terms of oligopoly than of perfect competition from 
which they may be rather far. Game theory is an 
appropriate tool to model electricity markets in an 
oligopoly competitive environment.  

In the electricity markets, in which the power 
transactions are undertaken on a grid that needs to be 
operated under strict physical and operational constraints; 
for this reason very specific occasions of market power 
behaviors related to system congestion may arise, giving 
a further source of market inefficiency.  

Game theory models suitable to represent the 
competitive electricity market have been analyzed and 
tested using the IEEE30 bus system. The simulations 
show a worsening of the market performance, as 
measured by the inefficiency index and the Lerner index, 
when compared to the ideal model of perfect competition. 
Effects generated by oligopoly competition are: loss in 
total social surplus, increase of the producer surplus at 
the expenses of consumer surplus, decrease in the 
quantity exchanged on the market, higher market clearing 
price.  

The loss of efficiency with respect to the perfect 
competition may vary a lot from a model to another. This 
shows that the type of competition in the market and/or 
the hypothesis we do to model it may lead to very 
different results. The monopoly model shows the worst 
behavior, both under constrained and unconstrained 
network. As for the oligopoly market, Counort model 
show a worse performance than the SFE-intercept model, 
and as a fact that, from the simulation results of other 
oligopoly models, Cournot model has the least 
competitive level both under constrained and 
unconstrained network. 

Due to the network constraints, the transmission 
network plays a major role to determine the market 
equilibrium. Under constrained network, the market 
clearing price is higher and the power transacted is lower 
than the corresponding values under unconstrained 
network. As for the surpluses values, the network 
constraints provide some producers with additional 
opportunity to get higher surplus with the decrement of 
the consumer surplus, leading to the higher level of 
market inefficiency compared with the unconstrained 
network. In this respect, to strengthen the electricity 
transmission network will contribute to mitigate the 
market power behaviors of the electricity producers.  
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